OpenCore

Reference Manual (0.8.1.2)
[2022.06.22]

Copyright ©2018-2022 vit9696

Note 2: At this moment Exclude is only applied to prelinkedkernel and newer mechanisms.

Note 3: In most cases strategy Exclude requires the new kext to be injected as a replacement.

Emulate Properties

1. CpuidiData

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property primarily meets three requirements:

o Enabling support for an unsupported CPU model (e.g. Intel Pentium).
« Enabling support for a CPU model not yet supported by a specific version of macOS (typically old versions).
¢ Enabling XCPM support for an unsupported CPU variant.

Note 1: It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

Note 2: Only the value of EAX, which represents the full CPUID, typically needs to be accounted for and remaining
bytes should be left as zeroes. The byte order is Little Endian. For example, C3 06 03 00 stands for CPUID
0x0306C3 (Haswell).

Note 3: For XCPM support it is recommended to use the following combinations. Be warned that one is required
to set the correct [frequency vectors matching the installed CPU.

o Haswell-E (0x0306F2) to Haswell (0x0306C3):
CpuidiData: C3 06 03 00 00 00 00 00 OO 00O 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 0O 00
o Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
CpuidiData: D4 06 03 00 00 00 00 00O 00 00 00 00O 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Comet Lake U62 (0x0A0660) to Comet Lake U42 (0x0806EC):
CpuidiData: EC 06 08 00 00 00 00 00 OO 00 00 00 00 OO OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Rocket Lake (0x040670) to Comet Lake (0x0A0655):
CpuidiData: 55 06 OA 00 00 00 00 00 00 00 00 00O 0O OO0 00 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00
o Alder Lake (0x090672) to Comet Lake (0x0A0655):
CpuidiData: 55 06 OA 00 00 00 00 00 OO 00 00 00 00 OO0 OO 00
CpuidiMask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4: Be aware that the following configurations are unsupported by XCPM (at least out of the box):

o Consumer Ivy Bridge (0x030649) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

e Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy workarounds
for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

CpuidiMask

Type: plist data, 16 bytes

Failsafe: All zero

Description: Bit mask of active bits in CpuidiData.

When each CpuidiMask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of CpuidiData.

DummyPowerManagement

Type: plist boolean

Failsafe: false

Requirement: 10.4-12

Description: Disables AppleIntelCpuPowerManagement.

27

https://github.com/dortania/bugtracker/issues/190
https://github.com/acidanthera/bugtracker/issues/365

11.

12.

13.

14.

Failsafe: Empty
Description: Patches data on specified macOS version or older.

Note: Refer to the [Add MaxKernel description| for matching logic.

MinKernel

Type: plist string

Failsafe: Empty

Description: Patches data on specified macOS version or newer.

Note: Refer to the [Add MaxKernel description|for matching logic.

Replace

Type: plist data

Failsafe: Empty

Description: Replacement data of one or more bytes.

ReplaceMask

Type: plist data

Failsafe: Empty (Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Must be equal to Replace in size if set.

Skip

Type: plist integer

Failsafe: 0 (Do not skip any occurrences)

Description: Number of found occurrences to skip before replacements are applied.

Quirks Properties

1. AppleCpuPmCfglLock

Type: plist boolean

Failsafe: false

Requirement: 10.4-12

Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in Applelntel CPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Some types of firmware lock the PKG_CST_CONFIG_CONTROL MSR register and the bundled ControlMsrE2 tool
can be used to check its state. Note that some types of firmware only have this register locked on some cores. As
modern firmware provide a CFG Lock setting that allows configuring the PKG_CST_CONFIG_CONTROL MSR register
lock, this option should be avoided whenever possible.

On APTIO firmware that do not provide a CFG Lock setting in the GUI, it is possible to access the option
directly:

(a) Download UEFITool and IFR-Extractor.

(b) Open the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, the firmware
may not have this option and the process should therefore be discontinued.

(c¢) Extract the Setup.bin PE32 Image Section (the UEFITool found) through the Extract Body menu option.

(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).

(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after
it (e.g. 0x123).

(f) Download and run Modified GRUB Shell compiled by |brainsucker or use a newer version| by |datasonel

(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by the actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

On selected platforms, the ControlMsrE2 tool can also change such hidden options. Pass desired argument: lock,
unlock for CFG Lock. Or pass interactive to find and modify other hidden options.

As a last resort, consider patching the BIOS| (for advanced users only).

30

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt

19.

20.

21.

sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

ProvideCurrentCpulnfo

Type: plist boolean

Failsafe: false

Requirement: 10.8 (10.14)

Description: Provides current CPU info to the kernel.

This quirk works differently depending on the CPU:

e For Microsoft Hyper-V it provides the correct TSC and FSB values to the kernel, as well as disables CPU
topology validation (10.8+).

e For KVM and other hypervisors it provides precomputed MSR 35h values solving kernel panic with -cpu
host.

o For Intel CPUs it adds support for asymmetrical SMP systems (e.g. Intel Alder Lake) by patching core
count to thread count along with the supplemental required changes (10.14+).

SetApfsTrimTimeout

Type: plist integer

Failsafe: -1

Requirement: 10.14 (not required for older)

Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

The APFS filesystem is designed in a way that the space controlled via the spaceman structure is either used or
free. This may be different in other filesystems where the areas can be marked as used, free, and unmapped. All
free space is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives
happens in LBA ranges due to the nature of the DSM command with up to 256 ranges per command. The more
fragmented the memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the level of drive fragmenation, the trim procedure may take a considerable
amount of time, causing noticeable boot slowdown. The APFS driver explicitly ignores previously unmapped
areas and repeatedly trims them on boot. To mitigate against such boot slowdowns, the macOS driver introduced
a timeout (9.999999 seconds) that stops the trim operation when not finished in time.

On several controllers, such as Samsung, where the deallocation process is relatively slow, this timeout can be
reached very quickly. Essentially, it means that the level of fragmentation is high, thus macOS will attempt to
trim the same lower blocks that have previously been deallocated, but never have enough time to deallocate
higher blocks. The outcome is that trimming on such SSDs will be non-functional soon after installation, resulting
in additional wear on the flash.

One way to workaround the problem is to increase the timeout to an extremely high value, which at the cost of
slow boot times (extra minutes) will ensure that all the blocks are trimmed. Setting this option to a high value,
such as 4294967295 ensures that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or
create a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the
trim operation can be mostly disabled by setting a very low timeout value, while O entirely disables it. Refer to
this larticle! for details.

Note: The failsafe value -1 indicates that this patch will not be applied, such that apfs.kext will remain
untouched.

Note 2: On macOS 12.0 and above, it is no longer possible to specify trim timeout. However, it-trim can be
disabled by setting 0.

Note 8: Trim operations are only affected at booting phase when the startup volume is mounted. Either specifying
timeout, or completely disabling trim with 0, will not affect normal macOS running.

ThirdPartyDrives

Type: plist boolean

Failsafe: false

Requirement: 10.6 (not required for older)

Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

34

https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html

If audio appears to be ‘playing’ on the correct codec, e.g. based on the debug log, but no sound is heard on any
channel, it is suggested to use ——gpio-setup (with no value) in the AudioDxe driver arguments. If specified with
no value, all stages will be enabled (equivalent of specifying 7). If this produces sound, it is then possible to try
fewer bits, e.g. —-gpio-setup=1, --gpio-setup=3, to find out which stages are actually required.

Note: Value 7 (all flags enabled) of this option — as required for the MacPro5, 1 — is compatible with most systems,
but is known to cause problems with sound (previous sounds are not allowed to finish before new sounds start)
on a small number of other systems, hence this option is not enabled by default.

e —-gpio-pins - Default: 0, auto-detect.

Specifies which GPIO pins should be operated on by --gpio-setup. This is a bit mask, with possible values from
0x0 to 0xFF. The usable maximum depends on the number if available pins on the audio out function group of
the codec in use, e.g. it is 0x3 (lowest two bits) if two GPIO pins are present, 0x7 if three pins are present, etc.

When --gpio-setup is enabled (i.e. non-zero), then 0 is a special value for —-gpio-pins, meaning that the pin
mask will be auto-generated based on the reported number of GPIO pins on the specified codec (see AudioCodec),
e.g. if the codec’s audio out function group reports 4 GPIO pins, a mask of 0xF will be used. The value in use
can be seen in the debug log in a line such as:

HDA: GPIO setup on pins OxOF - Success

Values for driver parameters can be specified in hexadecimal beginning with Ox or in decimal, e.g. -—gpio-pins=0x12
or ——gpio-pins=18.

e —-restore-nosnoop - Boolean flag, enabled if present.

AudioDxe clears the Intel HDA No Snoop Enable (NSNPEN) bit. On some systems, this change must be reversed
on exit in order to avoid breaking sound in Windows or Linux. If so, this flag should be added to AudioDxe
driver arguments. Not enabled by default, since restoring the flag can prevent sound from working in macOS on
some other systems.

11.9 Properties

1. APFS
Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in the APFS Properties section below.

2. Audio
Type: plist dict
Failsafe: None
Description: Configure audio backend support described in the Audio Properties section below.

Unless documented otherwise (e.g. ResetTrafficClass) settings in this section are for UEFI audio support only
(e.g. OpenCore generated boot chime and audio assist) and are unrelated to any configuration needed for OS
audio support (e.g. AppleALC).

UEFT audio support provides a way for upstream protocols to interact with the selected audio hardware and
resources. All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the supported
audio file formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported,
most common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

e Audio type can be OCEFIAudio for OpenCore audio files or AXEFTAudio for macOS bootloader audio files.

e Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and
Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.

¢ Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to
APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to|0C_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is 0CEFIAudio_VoiceOver_Boot.mp3.

84

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h

	Emulate Properties
	Quirks Properties
	Properties

