OpenCore

Reference Manual (0.7-7.8)

[2022.01.21]

Copyright ©2018-2022 vit9696

Failsafe: false
Description: Set to true to hide auxiliary entries from the picker menu.

An entry is considered auxiliary when at least one of the following applies:

¢ Entry is macOS recovery.

¢ Entry is macOS Time Machine.

o Entry is explicitly marked as Auxiliary.
o Entry is system (e.g. Reset NVRAM).

To display all entries, the picker menu can be reloaded into “Extended Mode” by pressing the Spacebar key.
Hiding auxiliary entries may increase boot performance on multi-disk systems.

. LauncherOption

Type: plist string

Failsafe: Disabled

Description: Register the launcher option in the firmware preferences for persistence.

Valid values:

o Disabled — do nothing.
e Full — create or update the top priority boot option in UEFI variable storage at bootloader startup.
— For this option to work, RequestBootVarRouting is required to be enabled.
e Short — create a short boot option instead of a complete one.
— This variant is useful for some older types of firmware, typically from Insyde, that are unable to manage
full device paths.
e System — create no boot option but assume specified custom option is blessed.
— This variant is useful when relying on ForceBooterSignature quirk and OpenCore launcher path
management happens through bless utilities without involving OpenCore.

This option allows integration with third-party operating system installation and upgrades (which may overwrite
the \EFI\BOOT\BOOTx64.efi file). The BOOTx64.¢fi file is no longer used for bootstrapping OpenCore if a
custom option is created. The custom path used for bootstrapping can be specified by using the LauncherPath
option.

Note 1: Some types of firmware may have NVRAM implementation flaws, no boot option support, or other
incompatibilities. While unlikely, the use of this option may result in boot failures and should only be used
exclusively on boards known to be compatible. Refer to acidanthera/bugtracker#1222| for some known issues
affecting Haswell and other boards.

Note 2: While NVRAM resets executed from OpenCore would not typically erase the boot option created in
Bootstrap, executing NVRAM resets prior to loading OpenCore will erase the boot option. Therefore, for
significant implementation updates, such as was the case with OpenCore 0.6.4, an NVRAM reset should be
executed with Bootstrap disabled, after which it can be re-enabled.

Note 3. Some versions of Intel Visual BIOS (e.g. on Intel NUC) have an unfortunate bug whereby if any boot

option is added referring to a path on a USB drive, from then on that is the only boot option which will be shown
when any USB drive is inserted. If OpenCore is started from a USB drive on this firmware with LauncherOption
set_to Full or Short, this applies and only the OpenCore boot entry will be seen afterwards, when any other
USB is inserted (this highly non-standard BIOS behaviour affects other software as well). The best way to avoid
this is to leave LauncherOption set to Disabled or System on any version of OpenCore which will be started
from a USB drive on this firmware. If the problem has already occurred the quickest reliable fix is:

+ Enable the system UEFI Shell in Intel Visual BIOS

+ With power off, insert an OpenCore USB_

+ Power up and select the system UEFL Shell

e Since the system shell does not include befg, use the system shell to start OpenCore’s OpenShell (e.g. b
entering the command FS2: \EFI\OC\Tools\OpenShell.efi , but you will need to work out which drive is
correct for OpenCore and modify the drive number FS#: accordingly)

+ Within OpenShell, use befg boot dump to display the NVRAM boot options and then use befg boot rm
(where # is the number of the OpenCore boot entry) to remove the OpenCore entry

39

https://github.com/acidanthera/bugtracker/issues/1222

It_is alternatively possible to start OpenShell directly from the OpenCore boot menu, if you have a working
configured OpenCore for the system. In that case, and if OpenCore has RequestBootVarRouting enabled, it
will be necessary to run the command \EFT\OC\Tools\OpenControl.efi disable before using befg. (After
OpenControl disable, it is necessary to either reboot or run OpenControl restore, before booting an operating
system.) It is also possible to use efibootmgr within Linux to remove the offending entry, if you have a working

version of Linux on the machine. Linux must be started either not via OpenCore, or via OpenCore with
RequestBootVarRouting disabled for this to work.

. LauncherPath

Type: plist string
Failsafe: Default
Description: Launch path for the LauncherOption property.

Default points to OpenCore.efi. User specified paths, e.g. \EFI\SomeLauncher.efi, can be used to provide
custom loaders, which are supposed to load OpenCore.efi themselves.

. PickerAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for the OpenCore picker.

Different OpenCore pickers may be configured through the attribute mask containing OpenCore-reserved
(BITO~BIT15) and OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

e 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:
OpenCore will attempt loading a volume icon by searching as follows, and will fallback to the default icon
on failure:
— .VolumeIcon.icns file at Preboot volume in per-volume directory (/System/Volumes/Preboot/{GUID}/
when mounted at the default location within macOS) for APFS (if present).
— .VolumeIcon.icns file at the Preboot volume root (/System/Volumes/Preboot/, when mounted at
the default location within macOS) for APFS (otherwise).
— .VolumeIcon.icns file at the volume root for other filesystems.

Note 1: The Apple picker partially supports placing a volume icon file at the operating system’s Data
volume root, /System/Volumes/Data/, when mounted at the default location within macOS. This approach
is flawed: the file is neither accessible to OpenCanopy nor to the Apple picker when FileVault 2, which is
meant to be the default choice, is enabled. Therefore, OpenCanopy does not attempt supporting Apple’s
approach. A volume icon file may be placed at the root of the Preboot volume for compatibility with both
OpenCanopy and the Apple picker, or use the Preboot per-volume location as above with OpenCanopy as a
preferred alternative to Apple’s approach.

Note 2: Be aware that using a volume icon on any drive overrides the normal OpenCore picker behaviour
for that drive of selecting the appropriate icon depending on whether the drive is internal or external.

e 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, prevides-use custom prerendered titles for boot entries from
.disk_label (.disk_label_2x) file next to the bootloader for all filesystems. Prerendered-These labels can
be generated via the disklabel utility or the bless --folder {FOLDER PATH} --label {LABEL TEXT}
command. When prerendered labels are disabled or missing, use label text in {.contentDetails (or
.disk_label.contentDetails) will-be-renderedile next to bootloader if present instead, otherwise the
entry name itself will be rendered.

e 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. This may however give less detail for the actual boot entry.

e 0x0008 — OC_ATTR_HIDE_THEMED_ICONS, prefers builtin icons for certain icon categories to match the theme

style. For example, this could force displaying the builtin Time Machine icon. Requires 0C_ATTR_USE_VOLUME_ICON.

e 0x0010 — OC_ATTR_USE_POINTER_CONTROL, enables pointer control in the OpenCore picker when available.
For example, this could make use of mouse or trackpad to control Ul elements.

e 0x0020 — OC_ATTR_SHOW_DEBUG_DISPLAY, enable display of additional timing and debug information, in
Builtin picker in DEBUG and NOOPT builds only.

e 0x0040 — OC_ATTR_USE_MINIMAL_UI, use minimal UI display, no Shutdown or Restart buttons, affects
OpenCanopy and builtin picker.

40

e 0x0080 — OC_ATTR_USE_FLAVQOUR_ICON, provides flexible boot entry content description, suitable for picking
the best media across different content sets:
When enabled, the entry icon in OpenCanopy and the audio assist entry sound in OpenCanopy and builtin
boot picker are chosen by something called content flavour. To determine content flavour the following
algorithm is used:

— For a Tool the value is read from Flavour field.

— For an automatically discovered entry, including for boot entry protocol entries such as those generated
by the OpenLinuxBoot driver, it is read from the .contentFlavour file next to the bootloader, if
present.

— For a custom entry specified in the Entries section it is read from the .contentFlavour file next to
the bootloader if Flavour is Auto, otherwise it is specified via the Flavour value itself.

— If read flavour is Auto or there is no .contentFlavour, entry flavour is chosen based on the entry type
(e.g. Windows automatically gets Windows flavour).

The Flavour value is a sequence of : separated names limited to 64 characters of printable 7-bit ASCII. This
is designed to support up to approximately five names. Each name refers to a flavour, with the first name
having the highest priority and the last name having the lowest priority. Such a structure allows describing
an entry in a more specific way, with icons selected flexibly depending on support by the audio-visual
pack. A missing audio or icon file means the next flavour should be tried, and if all are missing the choice
happens based on the type of the entry. Example flavour values: BigSur:Apple, Windows10:Windows.
OpenShell:UEFIShell:Shell.

Using flavours means that you can switch between icon sets easily, with the flavour selecting the best available
icons from each set. E.g. specifying icon flavour Debian:Linux will use the icon Debian.icns if provided,
then will try Linux.icns, then will fall back to the default for an OS, which is HardDrive.icns.

Things to keep in mind:

— For security reasons Ext<Flavour>.icns and <Flavour>.icns are both supported, and only Ext<Flavour>.icns
will be used if the entry is on an external drive (followed by default fallback ExtHardDrive.icns).

— Where both apply .VolumeIcon.icns takes precence over .contentFlavour.

— In order to allow icons and audio assist to work correctly for tools (e.g. for UEFT Shell), system
default boot entry icons (see Docs/Flavours.md) specified in the Flavour setting for Tools or Entries
will continue to apply even when flavour is disabled. Non-system icons will be ignored in this case.
In addition, the flavours UEFIShell and NVRAMReset are given special processing, identifying their
respective tools to apply correct audio-assist, default builtin labels, etc.

— A list of recommended flavours is provided in Docs/Flavours.md.

7. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in the OpenCore picker.

For the macOS bootloader, screen reader preference is set in the preferences.efires archive in the isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support, this option is an independent
equivalent. Toggling screen reader support in both the OpenCore picker and the macOS bootloader FileVault 2
login window can also be done by using the Command + F5 key combination.

Note: The screen reader requires working audio support. Refer to the UEFI Audio Properties section for details.

8. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in the OpenCore picker.

In addition to action hotkeys, which are partially described in the PickerMode section and are typically handled
by Apple BDS, modifier keys handled by the operating system bootloader (boot.efi) also exist. These keys
allow changing the behaviour of the operating system by providing different boot modes.

On certain firmware, using modifier keys may be problematic due to driver incompatibilities. To workaround this
problem, this option allows registering certain hotkeys in a more permissive manner from within the OpenCore
picker. Such extensions include support for tapping on key combinations before selecting the boot item, and for

41

NVRAM reset. Refer to acidanthera/bugtracker#995 for details.

Note 2: Resetting NVRAM will also erase any boot options not backed up using the bless command. For example,
Linux installations to custom locations not specified in BlessOverride

. AllowSetDefault

Type: plist boolean

Failsafe: false

Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in the OpenCore
picker.

Note 1: May be used in combination with Shift+Enter or Shift+Index when PollAppleHotKeys is enabled.

Note 2: In order to support systems with unresponsive modifiers during preboot (which includes V1 and V2
KeySupport mode on some firmware) OpenCore also allows holding the =/+ key in order to trigger ‘set default’
mode.

. AllowToggleSip

Type: plist boolean

Failsafe: false

Description: Enable entry for disabling and enabling System Integrity Protection in OpenCore picker.

This will toggle Apple NVRAM variable csr-active-config between 0 for SIP Enabled and a practical default
value for SIP Disabled{eurrently-0x26F}.

Note 1: Tt is strongly recommended not to make a habit of running macOS with SIP disabled. Use of this boot
option may make it easier to quickly disable SIP protection when genuinely needed - it should be re-enabled again
afterwards.

Note 2: OpenCore uses 0x26F0x27F even—theugh—while csrutil disable on Big—Sur-macOS Big Sur and
Monterey sets 0x7F. %exp%&m%ﬂ&eeehe&ee—

o CSR_ALLOW_UNAPPROVED_KEXTS (0x200) is generally useful, in the case where you do need to have SIP
disabled anyway, as it allows installing unsigned kexts w1thout manual approval in System Preferences
e CSR_ALLOW_UNAUTHENTICATED_ROOT (0x800) is not pt included

ARAAARRA

as it is very easy when using it to inadvertently break OS seal and revent incremental OTA updates.

Note8: For any other value which you may need to use, it is possible to configure CsrUtil.efi as a TextMode
Tools entry to configure a different value, e.g. use toggle ©x6F0x77 in Arguments to toggle the SIP disabled
value set by default by-esrutil-disable—-no—internal }&B&g—SﬂﬂgV@@VCVOV&Q@@thg

. ApECID
Type: plist integer, 64 bit
Failsafe: 0

Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, generate a random 64-bit number with a cryptographically secure random number generator.
As an alternative, the first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for Macs
without the T2 chip.

With this value set and SecureBootModel valid (and not Disabled), it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system must be reinstalled or personalised. Unless
the operating system is personalised, macOS DMG recovery cannot be loaded. In cases where DMG recovery
is missing, it can be downloaded by using the macrecovery utility and saved in com.apple.recovery.boot as
explained in the Tips and Tricks section. Note that DMG loading needs to be set to Signed to use any DMG
with Apple Secure Boot.

To personalise an existing operating system, use the bless command after loading to macOS DMG recovery.
Mount the system volume partition, unless it has already been mounted, and execute the following command:

47

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

Most Linux distros require the lext4_x64 driver, a few may require the btrfs_x64|driver, and a few may require no
additional file system driver: it depends on the filesystem of the boot partition of the installed distro, and on what
filesystems are already supported by the system’s firmware. LVM is not currently supported - this is because it is not
believed that there is currently a stand-alone UEFI LVM filesystem driver.

Be aware of the SyncRuntimePermissions quirk, which may need to be set to avoid early boot failure (typically halting
with a black screen) of the Linux kernel, due to a firmware bug of some firmware released after 2017. When present
and not mitigated by this quirk, this affects booting via OpenCore with or without OpenLinuxBoot.

After installing OpenLinuxBoot, it is recommended to compare the Linuxbootoptions{shown-with-cat /proc/cmdline}
S tg-vi ' ety ‘ acer—options shown in the OpenCore debug.
log when booting (or attempting to boot) a given dlstro against the options seen using the shell command cat
/proc/cmdline when the same distro has been booted via its native bootloader. In general (for safety and security
of the running distro) these options should match, and if they do not it is recommended to use the driver arguments
below (in particular LINUX_BOQT_ADD_RO, LINUX_BOOT _ADD RW. partuuidopts and autoopts) to modify the options
as required. Note however that the following differences are normal and do not need to be fixed:

o If the default bootloader is GRUB expeet-then the options generated by OpenLinuxBoot net-te-will not contain

a BOOT_IMAGE=... value where the GRUB optlons do, and %&Wﬂl contain an initrd=... value while-where the
GRUB options do not. ' ‘ 3 : , R o
less-

¢ OpenLinuxBoot uses PARTUUID rather than filesystem UUID to identify the location of initrd, this is by design

as UEFI filesystem drivers do not make Linux filesystem UUID values available.
o Less 1mp0rtant graphlcs handover optlons (such as w in the Ubuntu example glve in autoopts below) —3

i&i&ﬁse}.fwill not match exactly, this is not important as long as distro boots successfully.
If using OpenLinuxBoot with Secure Boot, users may wish to use the shim-to-cert.tool included in OpenCore

utilities, which can be used to extract the reeuired-publiekeyto—-alidatepublic key needed to boot a distro’s kernels
directly, as done when using OpenCore with OpenLinuxBoot, rather than via GRUB shim. For non-GRUB distros,

the required public key must be found by user research.

11.6.1 Configuration

The default parameter values should work well with no changes under most circumstances, but if required the following
options for the driver may be specified in UEFI/Drivers/Arguments:

e flags - Default: all flags except LINUX_BOOT_ADD_DEBUG_INFO and LINUX_BOOT_LOG_VERBOSE are set.
Available flags are:

— 0x00000001 (bit 0) — LINUX_BOOT_SCAN_ESP, Allows scanning for entries on EFI System Partition.

— 0x00000002 (bit 1) — LINUX_BOOT_SCAN_XBOOTLDR, Allows scanning for entries on Extended Boot Loader
Partition.

— 0x00000004 (bit 2) — LINUX_BOOT_SCAN_LINUX_ROOT, Allows scanning for entries on Linux Root filesystems.

0x00000008 (bit 3) — LINUX_BOOT_SCAN_LINUX_DATA, Allows scanning for entries on Linux Data filesystems.

— 0x00000080 (bit 7) — LINUX_BOOT_SCAN_OTHER, Allows scanning for entries on file systems not matched by
any of the above.

The following notes apply to all of the above options:
Note 1: Apple filesystems APFS and HFS are never scanned.

Note 2: Regardless of the above flags, a file system must first be allowed by Misc/Security/ScanPolicy
before it can be seen by OpenLinuxBoot or any other 0C_BOOT_ENTRY_PROTOCOL driver.

Note 3: It is recommended to enable scanning LINUX_ROOT and LINUX_DATA in both OpenLinuxBoot flags
and Misc/Security/ScanPolicy in order to be sure to detect all valid Linux installs, since Linux boot
filesystems are very often marked as LINUX_DATA.

— 0x00000100 (bit 8) — LINUX_BOOT_ALLOW_AUTODETECT, If set allows autodetecting and linking vmlinuz*
and init* ramdisk files when loader/entries files are not found.

7

https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData

— 0x00000200 (bit 9) — LINUX_BOOT_USE_LATEST, When a Linux entry generated by OpenLinuxBoot is
selected as the default boot entry in OpenCore, automatically switch to the latest kernel when a new version
is installed.

When this option is set, an internal menu entry id is shared between kernel versions from the same install of
Linux. Linux boot options are always sorted highest kernel version first, so this means that the latest kernel
version of the same install always shows as the default, with this option set.

Note: This option is recommended on all systems.

— 0x00000400 (blt 10) — LINUX_BOOT_ADD_RO, This option applies to autodetected Linux only (i.e. #o

+bi sionssnot to BLSpec and-or Fedora-style distributions sith-which have /loader/entries/*.conf
ﬁles) Some d&%ﬂib&@fwm run a ﬁlesystem check on loading which requires the root filesystem
to initially be mounted read-only via the ro kernel option, which requires this option to be added to the
autodetected options. Set this bit to add this option on autodetected distros; should be harmless but very
slightly slow down boot time (due to requried remount as read-write) on distros which do not require it.
Teo-When there are multiple distros and it is required to specify this option for specific distros only, use
partuuidopts:{partuuid}+=ro instead-of-to manually add the option where required, instead of using this
flag.

— 0x00000800 (bit 11) — LINUX BOOT_ADD_RW, Like LINUX BOOT_ADD_ RO, this option applies to autodetected
Linux only. It is not required for most distros (which usually require either ro or nothing to be added to

detected boot options), but is required on some Arch-derived distros, e.g. EndeavourOS. When there are

multiple distros and it is required to specify this option for specific distros only, use partuuidopts:{partuuid}+=rw

to manually add the option where required, instead of using this flag. If this option and LINUX BOOT ADD RO

are both specified, only this option is applied and LINUX_BOOT_ADD RO is ignored.
— 0x00002000 (bit 13) — LINUX_BOOT_ALLOW_CONF_AUTO_ROOT, In some instances of BootLoaderSpecByDefault

in combination with ostree, the /loader/entries/*.conf files do not specify a required root=... kernel
option — it is added by GRUB. If this bit is set and this situation is detected, then automatically add this
option. (Required for example by Endless OS.)

— 0x00004000 (bit 14) — LINUX_BOOT_LOG_VERBOSE, Add additional debug log info about files encountered
and autodetect options added while scanning for Linux boot entries.

— 0x00008000 (bit 15) — LINUX_BOOT_ADD_DEBUG_INFO, Adds a human readable file system type, followed
by the first eight characters of the partition’s unique partition uuid, to each generated entry name. Can help
with debugging the origin of entries generated by the driver when there are multiple Linux installs on one
system.

Flag values can be specified in hexadecimal beginning with Ox or in decimal, e.g. flags=0x80 or flags=128.

It is also possible to specify flags to add or remove, using syntax such as flags+=0xC000 to add all debuggin
options or flags==0x400 to remove the LINUX BOOT ADD RO option.

partuuidopts:{partuuid} [+]="{options}" - Default: not set.

Allows specifying kernel options for a given partition only. If specified with += then these are used in addition to
autodetected options, if specified with = they are used instead. Used for autodetected Linux only. Values specified
here are never used for entries created from /loader/entries/*.conf files.

Note: The partuuid value to be specified here is typically the same as the PARTUUID seen in root=PARTUUID=. ..
in the Linux kernel boot options (view using cat /proc/cmdline) for autodetected Debian-style distros, but is
not the same for Fedora-style distros booted from /loader/entries/*.conf files.

Typically this option should not be needed in the latter case, but in case it is, to find out the unique partition
uuid to use look for LNX: entries in the OpenCore debug log file. Alternatively, and for more advanced scenarios,
it is possible to examine how the distro’s partitions are mounted using the Linux mount command, and then find
out the partuuid of relevant mounted partitions by examining the output of 1s -1 /dev/disk/by-partuuid.

autoopts [+]="{options}" - Default: None specified. The kernel options to use for autodetected Linux only.
The value here is never used for entries created from /loader/entries/*.conf files. partuuidopts may be
more suitable where there are multiple distros, but autoopts with no PARTUUID required is more convenient
for just one distro. If specified with += then these are used in addition to autodetected options, if specified
with = they are used instead. As example usage, it is possible to use += format to add a vt.handoff options,
such as autopts+="vt.handoff=7" or autopts+="vt.handoff=3" (check cat /proc/cmdline when booted via
the distro’s default bootloader) on Ubuntu and related distros, in order to add the vt.handoff option to the
auto-detected GRUB defaults, and avoid a flash of text showing before the distro splash screen.

78

