OpenCore

Reference Manual (0.7-2.3)
[2021.09.03]

Copyright ©2018-2021 vit9696

open-source implementations with transparent binary generation is encouraged (e.g. (OCAT)), since other tools may
contain malware. Remember that a configuration made for a different hardware setup shall never be used on another
hardware setup.

For BIOS booting, a third-party UEFI environment provider is required and OpenDuetPkg is one such UEFI environment
provider for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be installed with a dedicated
tool — BootlInstall (bundled with OpenCore). [Third-party utilities can be used to perform this on systems other than
macOS.

For upgrade purposes, refer to the Differences.pdf document which provides information about changes to the
configuration (as compared to the previous release) as well as to the Changelog.md document (which contains a list of
modifications across all published updates).

3.3 Contribution

OpenCore can be compiled as a standard EDK II package and requires the EDK II Stable package. The currently
supported EDK II release is hosted in jacidanthera/audk. Required patches for this package can be found in the Patches
directory.

The only officially supported toolchain is XCODE5. Other toolchains might work but are neither supported nor
recommended. Contributions of clean patches are welcome. Please do follow EDK II C Codestyle.

To compile with XCODE5, besides Xcode, users should also install NASM| and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. An example command sequence is as follows:

git clone --depth=1 https://github.com/acidanthera/audk UDK

cd UDK

git submodule update --init --recommend-shallow

git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
source—edksetup-sh

«_./edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be using Language
Server Protocols. For example, [Sublime Text| with [LSP for Sublime Text| plugin. Add compile_flags.txt file with
similar content to the UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/0OpenCorePkg/Include/AMI
-I/UefiPackages/0OpenCorePkg/Include/Acidanthera
-I/UefiPackages/0OpenCorePkg/Include/Apple
-I/UefiPackages/OpenCorePkg/Include/Apple/X64
-I/UefiPackages/OpenCorePkg/Include/Duet
-I/UefiPackages/0OpenCorePkg/Include/Generic
-I/UefiPackages/0OpenCorePkg/Include/Intel
-I/UefiPackages/0OpenCorePkg/Include/Microsoft
-I/UefiPackages/OpenCorePkg/Include/Nvidia
-I/UefiPackages/0OpenCorePkg/Include/VMware
-I/UefiPackages/0vmfPkg/Include
-I/UefiPackages/ShellPkg/Include
-I/UefiPackages/UefiCpuPkg/Include

-IInclude

—include

https://github.com/ic005k/QtOpenCoreConfig
https://github.com/corpnewt/gibMacOS
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://microsoft.github.io/language-server-protocol
https://microsoft.github.io/language-server-protocol
https://www.sublimetext.com
https://lsp.sublimetext.io

Note8: For any other value which you may need to use, it is possible to configure CsrUtil.efi as a TextMode
Tools entry to configure a different value, e.g. use toggle 0x6F in Arguments to toggle the SIP disabled value
set by default by csrutil disable --no-internal in Big Sur.

. ApECID
Type: plist integer, 64 bit
Failsafe: 0

Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, generate a random 64-bit number with a cryptographically secure random number generator.
As an alternative, the first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for Macs
without the T2 chip.

With this value set and SecureBootModel valid (and not Disabled), it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system must be reinstalled or personalised. Unless
the operating system is personalised, macOS DMG recovery cannot be loaded. In cases where DMG recovery
is missing, it can be downloaded by using the macrecovery utility and saved in com.apple.recovery.boot as
explained in the Tips and Tricks section. Note that DMG loading needs to be set to Signed to use any DMG
with Apple Secure Boot.

To personalise an existing operating system, use the bless command after loading to macOS DMG recovery.
Mount the system volume partition, unless it has already been mounted, and execute the following command:

bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

On macOS 11 and newer the dedicated x86legacy model always uses ApECID. When this configuration settin,
is left as O first 8 bytes of system-id variable are used instead.

On macOS versions before macOS 11, which introduced a dedicated x861legacy model for models without the T2
chip, personalised Apple Secure Boot may not work as expected. When reinstalling the operating system, the
macOS Installer from macOS 10.15 and older will often run out of free memory on the /var/tmp partition when
trying to install macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer
image, an Unable to verify macOS error message will appear.

To workaround this issue, allocate a dedicated RAM disk of 2 MBs for macOS personalisation by entering the
following commands in the macOS recovery terminal before starting the installation:

disk=$(hdiutil attach -nomount ram://4096)

diskutil erasevolume HFS+ SecureBoot $disk

diskutil unmount $disk

mkdir /var/tmp/0SPersonalizationTemp

diskutil mount -mountpoint /var/tmp/0OSPersonalizationTemp $disk

. AuthRestart

Type: plist boolean

Failsafe: false

Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restarts by splitting and saving disk encryption keys between NVRAM and
RTC, which despite being removed as soon as OpenCore starts, may be considered a security risk and thus is
optional.

. BlacklistAppleUpdate
Type: plist boolean

47

https://support.apple.com/en-us/HT208330

	Contribution

