OpenCore

Reference Manual (0.7.0.1)
[2021.06.22]

Copyright ©2018-2021 vit9696



3 Setup

3.1 Directory Structure

ool

— OpenCore.efi
— config.plist

__________

____________________________

_____________________________________

Flgure 1. Directory Structure

When directory boot is used, the directory structure used should follow the descriptions in the [Directory Structure]




open-source implementations with transparent binary generation is encouraged (e.g. (OCAT)), since other tools may
contain malware. Remember that a configuration made for a different hardware setup shall never be used on another
hardware setup.

For BIOS booting, a third-party UEFI environment provider is required and OpenDuetPkg is one such UEFI environment
provider for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be installed with a dedicated
tool — BootlInstall (bundled with OpenCore). [Third-party utilities can be used to perform this on systems other than
macOS.

For upgrade purposes, refer to the Differences.pdf document which provides information about changes to the
configuration (as compared to the previous release) as well as to the Changelog.md document (which contains a list of
modifications across all published updates).

3.3 Contribution

OpenCore can be compiled as a standard EDK II package and requires the EDK II Stable package. The currently
supported EDK II release is hosted in jacidanthera/audk. Required patches for this package can be found in the Patches
directory.

The only officially supported toolchain is XCODE5. Other toolchains might work but are neither supported nor
recommended. Contributions of clean patches are welcome. Please do follow EDK II C Codestyle.

To compile with XCODE5, besides Xcode, users should also install NASM| and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. An example command sequence is as follows:

git clone --depth=1 https://github.com/acidanthera/audk UDK

cd UDK

git submodule update --init --recommend-shallow

git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
source edksetup.sh

make -C BaseTools

build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the reposfcomes. Another approach could be using
Language Server Protocols. For example, Sublime Text with Easy : t¢LSP for Sublime Text plugin. Add
~clangcompile cempleteflags.txt file with similar content to the UDK root:

-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/0OpenCorePkg/Include/AMI
-I/UefiPackages/0OpenCorePkg/Include/Acidanthera
-I/UefiPackages/0OpenCorePkg/Include/Apple
-I/UefiPackages/0OpenCorePkg/Include/Apple/X64
-I/UefiPackages/0OpenCorePkg/Include/Duet
-I/UefiPackages/OpenCorePkg/Include/Generic
-I/UefiPackages/0OpenCorePkg/Include/Intel
-I/UefiPackages/0OpenCorePkg/Include/Microsoft
-I/UefiPackages/0OpenCorePkg/Include/Nvidia
-I/UefiPackages/OpenCorePkg/Include/VMware
-I/UefiPackages/0vmfPkg/Include
-I/UefiPackages/ShellPkg/Include
-I/UefiPackages/UefiCpuPkg/Include

-IInclude

-include

/UefiPackages/MdePkg/Include/Uefi.h



https://github.com/ic005k/QtOpenCoreConfig
https://github.com/corpnewt/gibMacOS
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://microsoft.github.io/language-server-protocol
https://www.sublimetext.com
https://lsp.sublimetext.io

-fshort-wchar

-Wall

-Wextra
-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare
-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1
-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

Note: /UefiPackages in the sample file denotes an absolute path.

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tools check
the opencore-version NVRAM variable (see the Debug Properties section below) and warn users if the version listed
is unsupported or prerelease. The OpenCore configuration may change across releases and such tools shall ensure that
they carefully follow this document. Failure to do so may result in such tools being considered to be malware and
blocked by any means.

3.4 Coding conventions

As with any other project, we have conventions that we follow during development. All third-party contributors are
advised to adhere to the conventions listed below before submitting patches. To minimise abortive work and the
potential rejection of submissions, third-party contributors should initially raise issues to the Acidanthera Bugtracker
for feedback before submitting patches.

Organisation. The codebase is contained in the OpenCorePkg repository, which is the primary EDK II package.

e Whenever changes are required in multiple repositories, separate pull requests should be sent to each.

e Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to
avoid automatic build errors.

e Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the
cases it can be checked by accessing the (CI interface. Ensuring that static analysis finds no warnings is preferred.

e External pull requests and tagged commits must be validated. That said, commits in master may build but may
not necessarily work.

e Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning-20191026.

o Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were
made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes
are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used by
EDK II. Applying common software development practices or requesting clarification is recommended if any particular
case is not discussed below.

e Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

e Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied on
with care and reduced to the necessary amount.

¢ Check pointers for correct alignment with OcGuardLib and do not rely on the architecture being able to dereference
unaligned pointers.

o Use flexible array members instead of zero-length or one-length arrays where necessary.

o Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for
precondition and invariant sanity checking. Do not use runtime assertions to check for errors as they should never
alter control flow and potentially be excluded.

o Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.

o Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, %Ld and so
on as normal.


https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation flaws that result in boot
crashes. Reference: Debugging AppleACPIPlatform on 10.13 by Alex James (also known as theracermaster). The
issue was fixed in macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by the underlying firmware implementation. Among the position-
independent code, ACPI tables may contain the physical addresses of MMIO areas used for device configuration,
typically grouped by region (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes results in the shift of the addresses in the aforementioned OperationRegion constructions.

For this reason, the application of modifications to ACPI tables is extremely risky. The best approach is to make
as few changes as possible to ACPI tables and to avoid replacing any tables, particularly DSDT tables. When this
cannot be avoided, ensure that any custom DSDT tables are based on the most recent DSDT tables or attempt
to remove reads and writes for the affected areas.

When nothing else helps, this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It is not a magic bullet however, and only works with the most
typical cases. Do not use unless absolutely required as it can have the opposite effect on certain platforms and
result in boot failures.

4. ResetHwSig
Type: plist boolean
Failsafe: false
Description: Reset FACS table HardwareSignature value to 0.

This works around firmware that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

5. ResetLogoStatus
Type: plist boolean
Failsafe: false
Description: Reset BGRT table Displayed status field to false.

This works around firmware that provide a BGRT table but fail to handle screen updates afterwards.

6. SyncTablelds
Type: plist boolean

Description: Sync table identifiers with the SLIC table.

This works around patched tables becoming incompatible with the SLIC table causing licensing issues in older
Windows operating systems.

14


https://alextjam.es/debugging-appleacpiplatform/

10.

Requirement: 10.8 (not required for older)
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFFOO0 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. Only certain Xeon models typically benefit from the patch.

CustomSMBIOSGuid

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

DisableloMapper

Type: plist boolean

Failsafe: false

Requirement: 10.8 (not required for older)

Description: Disables I0Mapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note 1: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware
preferences, which does not obstruct VT-d support in other systems in case they need this.

Note 2: Misconfigured IOMMU in the firmware may result in broken devices such as ethernet or Wi-Fi adapters.

For instance, an ethernet adapter may cycle in link-up link-down state infinitely and a Wi-Fi adapter may fail
to discover networks. Gigabyte is one of the most common OEMs with these issues.

DisablelLinkeditJettison

Type: plist boolean

Failsafe: false

Requirement: 11

Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext, and possibly other kexts, function in macOS Big Sur at their best performance levels
without requiring the keepsyms=1 boot argument.

DisableRtcChecksum

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1: This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2: This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtcRam protocol description if this is desired.

ExtendBTFeatureFlags

Type: plist boolean

Failsafe: false

Requirement: 10.8-11

Description: Set FeatureFlags to 0xOF for full functionality of Bluetooth, including Continuity.

Note: This option is a substitution for BTALEContinuityFixup.kext, which does not function properly due to late
patching progress.

ExternalDiskIcons

Type: plist boolean

Failsafe: false

Requirement: 10.4

Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

31


https://github.com/acidanthera/RTCMemoryFixup

18. SetApfsTrimTimeout
Type: plist integer
Failsafe: -1
Requirement: 10.14 (not required for older)
Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

The APFS filesystem is designed in a way that the space controlled via the spaceman structure is either used or
free. This may be different in other filesystems where the areas can be marked as used, free, and unmapped. All
free space is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives
happens in LBA ranges due to the nature of the DSM command with up to 256 ranges per command. The more
fragmented the memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the level of drive fragmenation, the trim procedure may take a considerable
amount of time, causing noticeable boot slowdown. The APFS driver explicitly ignores previously unmapped
areas and repeatedly trims them on boot. To mitigate against such boot slowdowns, the macOS driver introduced
a timeout (9.999999 seconds) that stops the trim operation when not finished in time.

On several controllers, such as Samsung, where the deallocation process is relatively slow, this timeout can be
reached very quickly. Essentially, it means that the level of fragmentation is high, thus macOS will attempt to
trim the same lower blocks that have previously been deallocated, but never have enough time to deallocate
higher blocks. The outcome is that trimming on such SSDs will be non-functional soon after installation, resulting
in additional wear on the flash.

One way to workaround the problem is to increase the timeout to an extremely high value, which at the cost
of slow boot times (extra minutes) will ensure that all the blocks are trimmed. Set this option to a high value,
such as 4294967295, to ensure that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or
create a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the
trim operation can be disabled by setting a very low timeout value. e.g. 999. Refer to this article| for details.

19. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

20. XhciPortLimit
Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties

These properties are particularly relevant for older macOS operating systems. Refer to the Legacy Apple OS section
for details on how to install and troubleshoot such macOS installations.

L. CustomKernel

Type: plist boolean

Description: Use customised kernel cache from the Kernels directory located at the root of the ESP partition.

33


https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html
https://applelife.ru/posts/550233

Unsupported platforms including Atom and AMD require modified versions of XNU kernel in order to boot. This
option provides the possibility to using a customised kernel cache which contains such modifications from ESP

. FuzzyMatch

Type: plist boolean

Failsafe: false

Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier, kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On certain firmware, the EfiBoot device path differs between UEFI and
macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

. KernelArch

Type: plist string
Failsafe: Auto (Choose the preferred architecture automatically)
Description: Prefer specified kernel architecture (1386, 1386-user32, x86_64) when available.

On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from the usual x86_64. This
setting will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

o 1386 — Use 1386 (32-bit) kernel when available.
o 1386-user32 — Use 1386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit
capable processors if supported by the operating system.

— On macOS, 64-bit capable processors are assumed to support SSSE3. This is not the case for older 64-bit
capable Pentium processors, which cause some applications to crash on macOS 10.6. This behaviour
corresponds to the -legacy kernel boot argument.

— This option is unavailable on macOS 10.4 and 10.5 when running on 64-bit firmware due to an uninitialised
64-bit segment in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute 64-bit code as
16-bit code.

o x86_64 — Use x86_64 (64-bit) kernel when available.

The algorithm used to determine the preferred kernel architecture is set out below.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.
(b) OpenCore build architecture restricts capabilities to 1386 and 1386-user32 mode for the 32-bit firmware
variant.
(¢) Determined EfiBoot version restricts architecture choice:
e 10.4-10.5 — 1386 or i386-user32 (only on 32-bit firmware)
e 10.6 — 1386, 1386-user32, or x86_64
e 10.7 — 1386 or x86_64
e 10.8 or newer — x86_64
(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to
i386-user3?2 if supported by EfiBoot.
(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model
if any 1386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.
(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the
architecture remains present in the capabilities.
(g) The best supported architecture is chosen in this order: x86_64, 1386, 1386-user32.

Unlike macOS 10.7 (where certain board identifiers are treated as the 1386 only machines), and macOS 10.5 or
earlier (where x86_64 is not supported by the macOS kernel), macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also the macOS product
type (client vs server), macOS point release, and amount of RAM. The detection of all these is complicated and
impractical, as several point releases had implementation flaws resulting in a failure to properly execute the server
detection in the first place. For this reason, OpenCore on macOS 10.6 falls back on the x86_64 architecture
whenever it is supported by the board, as it is on macOS 10.7.

34



11.3 Tools and Applications

Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore (Refer to the Tools subsection for more details), most should be run
separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. It is typically unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
—--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1: /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2: To be able to use the bless command, [disabling System Integrity Protection is necessary.
Note 3: To be able to boot [Secure Boot| might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).

ChipTune* Test BeepGen protocol and generate audio signals of different style and length.

CleanNvram™* Reset NVRAM alternative bundled as a standalone tool.

CsrUtil* Simple implementation of SIP-related features of Apple csrutil.

GopStop™* Test GraphicsOutput protocol with a simple scenario,

KeyTester™ Test keyboard input in SimpleText mode.

MemTest86 Memory testing utility.

OpenControl®* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM
access when launching from OpenCore.

OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmware.

PavpProvision Perform EPID provisioning (requires certificate data configuration).

ResetSystem™ Utility to perform system reset. Takes reset type as an argument: coldreset, firmware,
shutdown, warmreset. Defaults to coldreset.

RtcRw™* Utility to read and write RTC (CMOS) memory.

ControlMsrE2%* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores and change such

hidden options on selected platforms.

11.4 OpenCanopy

OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on |OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The chosen icon
set may depend on the DefaultBackgroundColor variable value. Refer to PickerVariant for more details.

Predefined icons are saved in the PickerVariant-derived subdirectory of the \EFI\OC\Resources\Image directory. A
full list of supported icons (in .icns format) is provided below. When optional icons are missing, the closest available
icon will be used. External entries will use Ext-prefixed icon if available (e.g. 01dExtHardDrive.icns).

Note: In the following all dimensions are normative for the 1x scaling level and shall be scaled accordingly for other
levels.

e Cursor — Mouse cursor (mandatory, up to 144x144).
o Selected — Selected item (mandatory, 144x144).
o Selector — Selecting item (mandatory, up to 144x40).

o SetDefault — Selecting default (mandatory, up to 144x40; must be same width as Selector).

e Left — Scrolling left (mandatory, 40x40).

[0)


https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

	Setup
	Directory Structure
	Contribution
	Coding conventions

	Scheme Properties
	Tools and Applications
	OpenCanopy

