
OpenCore

Reference Manual (0.6.7
:::
.8)

[2021.03.08]

Copyright ©2018-2021 vit9696

1 Introduction
This document provides information on the

::::::
format

::
of

:::
the

:
OpenCore user configuration file format used to set up the

correct functioning of the macOS operating system. It is to be read as the official clarification of expected OpenCore
behaviour. All deviations, if found in published OpenCore releases, shall be considered to be documentation or
implementation issues which should be reported via the Acidanthera Bugtracker. An errata sheet is available in
OpenCorePkg repository.

This document is structured as a specification and is not meant to provide a step-by-step guide to configuring an
end-user Board Support Package (BSP). The intended audience of the document is anticipated to be programmers and
engineers with a basic understanding of macOS internals and UEFI functionality. For these reasons, this document is
available exclusively in English, and all other sources or translations of this document are unofficial and may contain
errors.

Third-party articles, utilities, books, and similar, may be more useful for a wider audience as they could provide
guide-like material. However, they are subject to their authors’ preferences, tastes, misinterpretations of this document,
and unavoidable obsolescence. In cases of using such sources, such as Dortania’s OpenCore Install Guide and related
material, please refer back to this document on every decision made and re-evaluate potential consequences

::::::::::
implications.

Please note that regardless of the sources used, users are required to fully understand every OpenCore configuration
option, and the principles behind them, before posting issues to the Acidanthera Bugtracker.

Note: Creating this document would not have been possible without the invaluable contributions from other people:
Andrey1970, Goldfish64, dakanji, PMheart, and several others, with the full list available in OpenCorePkg history.

1.1 Generic Terms
• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version

1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist multidata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (C string), plist integer, in which case the
result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist boolean,
in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other types or
larger integers invoke undefined behaviour.

2

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Install-Guide
https://dortania.github.io/getting-started
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/commits/master/Docs

2 Configuration

2.1 Configuration Terms
• OC config — OpenCore Configuration file in plist format named config.plist. It provides an extensible way

to configure OpenCore and is structured to be separated into multiple named sections situated under the root
plist dictionary. These sections may have plist array or plist dictionary types and are described in
corresponding sections of this document.

• valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with the # symbol (e.g. #Hello) are also considered valid keys and while
they behave as comments, effectively discarding their values, they are still required to be valid plist objects.
All other plist keys are not valid, and their presence results in undefined behaviour.

• valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object descriptions if any.

• invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object descriptions (e.g. value range), or
missing from the corresponding collection. Invalid values are read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid values, applying
incompatible values to the host system may result in undefined behaviour.

• optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in OC config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

• fatal behaviour — behaviour leading to boot termination. Implementations shall prevent the boot process
from continuing until the host system is restarted. It is permitted, but not required, to execute cold reboots or to
show warning messages in such cases.

• undefined behaviour — behaviour not prescribed by this document. Implementations may take any measures
including, but not limited to, measures associated with fatal behaviour, assumptions of any state or value, or
disregarding any associated states or values. This is however subject to such measures not negatively impacting
upon system integrity.

2.2 Configuration Processing
The OC config file is guaranteed to be processed at least once if found. Depending on

:::::::
Subject

::
to

::::
the

:
OpenCore

bootstrapping mechanism, the presence of multiple OC config files may lead to the reading of any of them. It is
permissible for no OC Config file to be present on disk. In such cases, if the implementation does not abort the boot
process, all values shall follow the rules of invalid values and optional values.

The OC config file has restrictions on size, nesting levels, and number of keys:

• The OC config file size shall not exceed 32 MBs.
• The OC config file shall not have more than 32 nesting levels.
• The OC config file may have up to 32,768 XML nodes within each plist object.

– One plist dictionary item is counted as a pair of nodes

Reading malformed OC config files results in undefined behaviour. Examples of malformed OC config files include
the following:

• OC config files that do not conform to DTD PLIST 1.0.
• OC config files with unsupported or non-conformant plist objects found in this document.
• OC config files violating restrictions on size, nesting levels, and number of keys.

It is recommended, but not required, to abort loading malformed OC config files and to continue as if an OC config
file is not present. For forward compatibility, it is recommended, but not required, for the implementation to warn
about the use of invalid values.

3

4 ACPI

4.1 Introduction
ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
The ACPI specification define the

::::::
defines

:
standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g.

_DSM, _PRW) for implementation. Modern hardware needs little
:::
few changes to maintain ACPI compatibility , yet some

of those
:::
and

:::::
some

:::::::
options

:::
for

::::
such

::::::::
changes are provided as a part of OpenCore.

To compile and disassemble ACPI tables, the iASL compiler developed by ACPICA can be used. A GUI front-end to
iASL compiler can be downloaded from Acidanthera/MaciASL.

ACPI changes apply globally (to every operating system) with the following effective order:

• Patch is processed.
• Delete is processed.
• Add is processed.
• Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection (consistent with the ACPI
specification, not possible before the operating system boots), operating system chainloading, and difficult ACPI
debugging. Hence, more attention may be required when writing changes to _OSI.

Applying the patches early makes it possible to write so called “proxy” patches, where the original method is patched
in the original table and is implemented in the patched table.

There are several sources of ACPI tables and workarounds. Commonly used ACPI tables are provided with OpenCore,
VirtualSMC, VoodooPS2, and WhateverGreen releases. Besides those, several third-party instructions may be found on
the AppleLife Laboratory and DSDT subforums (e.g. Battery register splitting guide). A slightly more user-friendly
explanation of some tables included with OpenCore can also be found in Dortania’s Getting started with ACPI guide.
For more exotic cases, there are several alternatives such as daliansky’s ACPI sample collection. Note however that the
quality of the suggested solutions will be variable.

4.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected tables from the OC/ACPI directory.

Designed to be filled with plist dict values, describing each add entry. See the Add Properties section below.

2. Delete
Type: plist array
Failsafe: Empty
Description: Remove selected tables from the ACPI stack.

Designed to be filled with plist dict values, describing each delete entry. See the Delete Properties section
below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See the Patch Properties section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in the Quirks Properties section below.

10

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases
https://applelife.ru/forums/xakintosh.67
https://applelife.ru/forums/dsdt.129
https://applelife.ru/posts/498967
https://dortania.github.io
https://dortania.github.io/Getting-Started-With-ACPI
https://github.com/daliansky
https://github.com/daliansky/OC-little

Failsafe: All zero (Match any table signature)
Description: Match table signature equal to this value.

In most cases, ACPI patches are not useful and are harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in certain tables. For ACPI consistency it is
much safer to rename devices at the I/O Registry level, as done by WhateverGreen.

• Avoid patching _OSI to support a higher feature set level whenever possible. While this enables a number of
workarounds on APTIO firmware, it typically results in a need for additional patches. Modern firmware generally
does not need this

:::::
These

:::
are

::::
not

::::::
usually

:::::::
needed

:::
on

:::::::
modern

::::::::
firmware

:
and smaller patches work well on firmware

that does. However, laptop vendors often rely on this method to determine the availability of functions such as
modern I2C input support, thermal adjustment and custom feature additions.

• Avoid patching embedded controller event _Qxx just to enable brightness keys. The conventional process to find
these keys typically involves significant modifications to DSDT and SSDT files and in addition, the debug kext is
not stable on newer systems. Please use the built-in brightness key discovery in BrightnessKeys instead.

• Avoid making ad hoc changes such as renaming _PRW or _DSM whenever possible.

Some cases where patching is actually useful include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide a custom method implementation within an SSDT, to inject shutdown fixes on certain computers for
instance, the original method can be replaced with a dummy name by patching _PTS with ZPTS and adding a
callback to the original method.

The Tianocore AcpiAml.h source file may help with better understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make the
system unstable due to area relocation. If such changes are needed, the utilisation of “proxy” patching or the padding
of NOP to the remaining area could be considered.

4.6 Quirks Properties
1. FadtEnableReset

Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and a few newer laptops. Can also fix power-button shortcuts. Not
recommended unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation flaws that result in boot
crashes. Reference: Debugging AppleACPIPlatform on 10.13 by Alex James (also known as theracermaster). The
issue was fixed in macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by the underlying firmware implementation. Among the position-
independent code, ACPI tables may contain the physical addresses of MMIO areas used for device configuration,
typically grouped by region (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes results in the shift of the addresses in the aforementioned OperationRegion constructions.

13

https://github.com/acidanthera/WhateverGreen
https://github.com/acidanthera/BrightnessKeys
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

5 Booter

5.1 Introduction
This section allows the application of different types of UEFI modifications to operating system bootloaders, primarily
the Apple bootloader (boot.efi). The modifications currently provide various patches and environment alterations for
different firmware types. Some of these features were originally implemented as part of AptioMemoryFix.efi, which is
no longer maintained. Refer to the Tips and Tricks section for instructions on migration.

If this is used for the first time on customised firmware, the following requirements should be met before starting:

• Most up-to-date UEFI firmware (check the motherboard vendor website).
• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note that on some motherboards, notably

the ASUS WS-X299-PRO, this option results in adverse effects and must be disabled. While no other motherboards
with the same issue are known, this option should be checked first whenever erratic boot failures are encountered.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be

booted at all or No slide values are usable! Use custom slide! message can be seen in the log.
• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider patching it if no option

is available (for advanced users only). See VerifyMsrE2 notes for more details.
• CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older,

GOP ROM may have to be flashed first. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in
case of any potential confusion.

• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may

have to be disabled in firmware settings present.

When debugging sleep issues, Power Nap and automatic power off (which appear to sometimes cause wake to black
screen or boot loop issues on older platforms) may be temporarily disabled. The specific issues may vary, but generally
ACPI tables should

:::::::
typically

:
be looked at first.

Here is an example of a defect found in
::
on some Z68 motherboards. To turn Power Nap and the others off, run the

following commands in Terminal:

sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may be reset by hardware changes and in certain other circumstances. To view their current state,
use the pmset -g command in Terminal.

5.2 Properties
1. MmioWhitelist

Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See the MmioWhitelist Properties section below.

2. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in booter.

Designed to be filled with plist dictionary values, describing each patch. See the Patch Properties section
below.

3. Quirks
Type: plist dict
Description: Apply individual booter quirks described in the Quirks Properties section below.

15

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

5.3 MmioWhitelist Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. The debug log can be used to find the list of the candidates.

2. Comment
Type: plist string
Failsafe: Empty
Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this
value is used is implementation defined.

3. Enabled
Type: plist boolean
Failsafe: false
Description: Exclude MMIO address from the devirtualisation procedure.

5.4 Patch Properties
1. Arch

Type: plist string
Failsafe: Any (Apply to any supported architecture)
Description: Booter patch architecture (i386, x86_64).

2. Comment
Type: plist string
Failsafe: Empty
Description: Arbitrary ASCII string used to provide human readable reference for the entry. Whether this
value is used is implementation defined.

3. Count
Type: plist integer
Failsafe: 0 (Apply to all occurrences found)
Description: Number of patch occurrences to apply.

4. Enabled
Type: plist boolean
Failsafe: false
Description: Set to true to activate this booter patch.

5. Find
Type: plist data
Failsafe: Empty
Description: Data to find. Must be equal to Replace in size if set.

6. Identifier
Type: plist string
Failsafe: Any (Match any booter)
Description: Apple for macOS booter (generally

::::::::
typically

:
boot.efi); or a name with a suffix, such as

bootmgfw.efi, for a specific booter.

7. Limit
Type: plist integer
Failsafe: 0 (Search the entire booter)
Description: Maximum number of bytes to search for.

16

Note: This quirk may potentially weaken firmware security. Please use RebuildAppleMemoryMap if the firmware
supports memory attributes table (MAT). Refer to the OCABC: MAT support is 1/0 log entry to determine
whether MAT is supported.

9.
:::::::::::::::::::::
ForceBooterSignature

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::
Set

:::::::
macOS

:::::::::::::::
boot-signature

:
to

::::::::::
OpenCore

:::::::::
launcher.

:

::::::
Booter

:::::::::
signature,

::::::::::
essentially

::
a

::::::
SHA-1

:::::
hash

::
of

::::
the

::::::
loaded

:::::::
image,

::
is

::::
used

:::
by

:::::
Mac

::::
EFI

::
to

::::::
verify

:::
the

::::::::::::
authenticity

::
of

:::
the

::::::::::
bootloader

::::::
when

::::::
waking

:::::
from

::::::::::::
hibernation.

:::::
This

::::::
option

::::::
forces

:::::::
macOS

::
to

::::
use

:::::::::
OpenCore

::::::::
launcher

:::::::
SHA-1

::::
hash

::
as

::
a
::::::
booter

:::::::::
signature

:::
to

::
let

::::::::::
OpenCore

:::::
shim

:::::::::::
hibernation

::::
wake

:::
on

:::::
Mac

::::
EFI

::::::::
firmware.

:

::::
Note

:
:
:::::::::
OpenCore

::::::::
launcher

:::::
path

::
is

:::::::::::
determined

::::
from

::::::::::::::
LauncherPath

::::::::
property.

:

10. ForceExitBootServices
Type: plist boolean
Failsafe: false
Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that the ExitBootServices call succeeds. If required, an outdated MemoryMap key argument can
be used by obtaining the current memory map and retrying the ExitBootServices call.

Note: The need for this quirk is determined by early boot crashes of the firmware. Do not use this option without
a full understanding of the implications.

11. ProtectMemoryRegions
Type: plist boolean
Failsafe: false
Description: Protect memory regions from incorrect access.

Some types of firmware incorrectly map certain memory regions:

• The CSM region can be marked as boot services code, or data, which leaves it as free memory for the XNU
kernel.

• MMIO regions can be marked as reserved memory and stay unmapped. They may however be required to
be accessible at runtime for NVRAM support.

This quirk attempts to fix the types of these regions, e.g. ACPI NVS for CSM or MMIO for MMIO.

Note: The need for this quirk is determined by artifacts, sleep wake issues, and boot failures. This quirk is
typically only required by very old firmware.

12. ProtectSecureBoot
Type: plist boolean
Failsafe: false
Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk attempts to avoid issues with NVRAM implementations with fragmentation issues, such as
on the MacPro5,1 as well as on certain Insyde firmware without garbage collection or with defective garbage
collection.

13. ProtectUefiServices
Type: plist boolean
Failsafe: false
Description: Protect UEFI services from being overridden by the firmware.

Some modern firmware, including on virtual machines such as VMware, may update pointers to UEFI services
during driver loading and related actions. Consequently, this directly obstructs other quirks that affect memory
management, such as DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and may also
obstruct other quirks depending on the scope of such.

Note: On VMware, the need for this quirk may be determined by the appearance of the “Your Mac OS guest
might run unreliably with more than one virtual core.” message.

19

Note: The need for this quirk is determined by early boot failures.

18. SignalAppleOS
Type: plist boolean
Failsafe: false
Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmware, which loads different operating systems with different hardware configurations.
For example, it is supposed to enable Intel GPU in Windows and Linux in some dual-GPU MacBook models.

19. SyncRuntimePermissions
Type: plist boolean
Failsafe: false
Description: Update memory permissions for the runtime environment.

Some types of firmware fail to properly handle runtime permissions:

• They incorrectly mark OpenRuntime as not executable in the memory map.
• They incorrectly mark OpenRuntime as not executable in the memory attributes table.
• They lose entries from the memory attributes table after OpenRuntime is loaded.
• They mark items in the memory attributes table as read-write-execute.

This quirk tries to update
::::::::
attempts

:::
to

::::::
update

::::
the memory map and memory attributes table to correct this.

Note: The need for this quirk is indicated by early boot failures. Only firmware released after 2017 is typically
affected.

21

7 Kernel

7.1 Introduction
This section allows the application of different kinds of kernelspace modifications on Apple Kernel (XNU). The
modifications currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected kernel drivers from OC/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See the Add Properties section below.
Kernel driver load order follows the item order in the array, thus the dependencies should be written prior to
their consumers.

To track the dependency order, inspect the OSBundleLibraries key in the Info.plist of the kext. Any kext
mentioned in the OSBundleLibraries of the other kext must precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

2. Block
Type: plist array
Failsafe: Empty
Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See the Block Properties
section below.

3. Emulate
Type: plist dict
Description: Emulate certain hardware in kernelspace via parameters described in the Emulate Properties
section below.

4. Force
Type: plist array
Failsafe: Empty
Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See the Force Properties section below. This
section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise. The
issue normally

::::::::
typically affects older operating systems, where various dependency kexts, such as IOAudioFamily

or IONetworkingFamily may not be present in the kernel cache by default. The kernel driver load order follows
the item order in the array, thus the dependencies should be written prior to their consumers. Force happens
before Add.

Note: The signature of the “forced” kernel drivers is not checked anyhow, making the use of this feature extremely
dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating
systems.

5. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See the Patch Properties section
below.

6. Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in the Quirks Properties section below.

24

https://opensource.apple.com/source/xnu

Note 1 : It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

Note 2 : Normally it is only
::::
Only

:
the value of EAXthat needs to be taken care of, since it

:
,
::::::
which represents the

full CPUID. The remaining bytes are to
:
,
::::::::
typically

::::::
needs

::
to

:::
be

:::::::::
accounted

:::
for

::::
and

:::::::::
remaining

:::::
bytes

:::::::
should be left

as zeroes. Byte
:::
The

:::::
byte order is Little Endian, so for .

::::
For

:
example, C3 06 03 00 stands for CPUID 0x0306C3

(Haswell).

Note 3 : For XCPM support it is recommended to use the following combinations.

• Haswell-E (0x0306F2) to Haswell (0x0306C3):
Cpuid1Data: C3 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

• Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
Cpuid1Data: D4 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4 : Be aware that the following configurations are unsupported by XCPM (at least out of the box):

• Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

• Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy workarounds
for older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

2. Cpuid1Mask
Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in Cpuid1Data.

When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

3. DummyPowerManagement
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables AppleIntelCpuPowerManagement.

Note 1 : This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power
management driver in macOS.

Note 2 : While this option is typically needed to disable AppleIntelCpuPowerManagement on unsupported
platforms, it can also be used to disable this kext in other situations (e.g. with Cpuid1Data left blank).

4. MaxKernel
Type: plist string
Failsafe: Empty
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or older.

Note: Refer to the Add MaxKernel description for matching logic.

5. MinKernel
Type: plist string
Failsafe: Empty
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or newer.

Note: Refer to the Add MaxKernel description for matching logic.

7.6 Force Properties
1. Arch

Type: plist string
Failsafe: Any (Apply to any supported architecture)
Description: Kext architecture (i386, x86_64).

27

https://github.com/acidanthera/bugtracker/issues/365

7.8 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Some types of firmware lock the PKG_CST_CONFIG_CONTROL MSR register and the bundled VerifyMsrE2 tool can
be used to check its state. Note that some types of firmware only have this register locked on some cores.

As modern firmware provide a CFG Lock setting that allows configuring the PKG_CST_CONFIG_CONTROL MSR
register lock, this option should be avoided whenever possible. On APTIO firmware that do not provide a CFG
Lock setting in the GUI, it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.
(b) Open the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, the firmware

may not have this option and the process should therefore be discontinued.
(c) Extract the Setup.bin PE32 Image Section (the UEFITool found) through the Extract Body menu option.
(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after

it (e.g. 0x123).
(f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by the actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables multiple MSR access critical for certain CPUs, which have no native XCPM support.

This is normally
:::::::
typically

:
used in conjunction with

:::
the

:
Emulate section on Haswell-E, Broadwell-E, Skylake-SP,

and similar CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. Only certain Xeon models typically benefit from the patch.

5. CustomSMBIOSGuid
Type: plist boolean

30

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

as 4294967295, to ensure that all blocks are trimmed. Alternatively, use over-provisioning, if supported, or create
a dedicated unmapped partition where the reserve blocks can be found by the controller. Conversely, the trim
operation can be disabled by setting a very low timeout value. e.g. 999. Refer to this article for more details.

18. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

19. XhciPortLimit
Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possibleand may no longer function correctly in macOS 11.
:
.
:
USB

port limit is imposed by the amount of used bits in locationID format and there is no possible way to workaround
this without heavy OS modification. The only valid solution is to limit the amount of used ports to 15 (discarding
some). More details can be found on AppleLife.ru.

7.9 Scheme Properties
These properties are particularly relevant for older macOS operating systems. Refer to the Legacy Apple OS section
for details on how to install and troubleshoot such macOS installations.

1. FuzzyMatch
Type: plist boolean
Failsafe: false
Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier, kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On certain firmware, the EfiBoot device path differs between UEFI and
macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch
Type: plist string
Failsafe: Auto (Choose the preferred architecture automatically)
Description: Prefer specified kernel architecture (i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier, the XNU kernel can boot with architectures different from the usual x86_64. This
setting will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

• i386 — Use i386 (32-bit) kernel when available.
• i386-user32 — Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit

capable processors if supported by the operating system.
– On macOS, 64-bit capable processors are assumed to support SSSE3. This is not the case for older 64-bit

capable Pentium processors, which cause some applications to crash on macOS 10.6. This behaviour
corresponds to the -legacy kernel boot argument.

– This option is unavailable on macOS 10.4 and 10.5 when running on 64-bit firmware due to an uninitialised
64-bit segment in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute 64-bit code as
16-bit code.

• x86_64 — Use x86_64 (64-bit) kernel when available.

33

https://interface31.ru/tech_it/2015/04/mozhno-li-effektivno-ispolzovat-ssd-bez-podderzhki-trim.html
https://github.com/acidanthera/bugtracker/issues/1514
https://applelife.ru/posts/550233

The algorithm used to determine the preferred kernel architecture is set out below.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware
variant.

(c) Determined EfiBoot version restricts architecture choice:
• 10.4-10.5 — i386 or i386-user32 (only on 32-bit firmware)
• 10.6 — i386, i386-user32, or x86_64
• 10.7 — i386 or x86_64
• 10.8 or newer — x86_64

(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to
i386-user32 if supported by EfiBoot.

(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model
if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.

(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the
architecture remains present in the capabilities.

(g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

Unlike macOS 10.7 (where certain board identifiers are treated as the i386 only machines), and macOS 10.5 or
earlier (where x86_64 is not supported by the macOS kernel), macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also the macOS product
type (client vs server), macOS point release, and amount of RAM. The detection of all these is complicated
and impractical, as several point releases had implementation defects

:::::
flaws resulting in a failure to properly

execute the server detection in the first place. For this reason, OpenCore on macOS 10.6 falls back on the x86_64
architecture whenever it is supported by the board, as it is on macOS 10.7.

A 64-bit Mac model compatibility matrix corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5
is outlined below.

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported as they are handled by EfiBoot
and hence, difficult to detect.

3. KernelCache
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance.
This setting prevents the use of faster kernel caching variants if slower variants are available for debugging and
stability reasons. I.e.

:::::
That

::
is, by specifying Mkext, Prelinked will be disabled for e.g. 10.6 but not for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS i386 NC i386 MK i386 PK x86_64 NC x86_64 MK x86_64 PK x86_64 KC
10.4 YES YES (V1) NO (V1) — — — —
10.5 YES YES (V1) NO (V1) — — — —
10.6 YES YES (V2) YES (V2) YES YES (V2) YES (V2) —
10.7 YES — YES (V3) YES — YES (V3) —
10.8-10.9 — — — YES — YES (V3) —
10.10-10.15 — — — — — YES (V3) —
11+ — — — — — YES (V3) YES

34

8 Misc

8.1 Introduction
This section contains miscellaneous configuration options affecting OpenCore operating system loading behaviour in
addition to other options that do not readily fit into other sections.

OpenCore broadly follows the “bless” model, also known as the “Apple Boot Policy”. The primary purpose of the
“bless” model is to allow embedding boot options within the file system (and be accessible through a specialised driver)
as well as supporting a broader range of predefined boot paths as compared to the removable media list set out in the
UEFI specification.

Partitions can only booted by OpenCore when they meet the requirements of a predefined Scan policy. This policy
sets out which specific file systems a partition must have, and which specific device types a partition must be located
on, to be made available by OpenCore as a boot option. Refer to the ScanPolicy property for more details.

The scan process starts with enumerating all available partitions, filtered based on the Scan policy. Each partition
may generate multiple primary and alternate options. Primary options represent operating systems installed on the
media, while alternate options represent recovery options for the operating systems on the media.

• Alternate options may exist without primary options and vice versa.
• Options may not necessarily represent operating systems on the same partition.
• Each primary and alternate option can be an auxiliary option or not.

– Refer to the HideAuxiliary section for more details.

The algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered based on the Scan policy (and driver availability).
2. Obtain all available boot options from the BootOrder UEFI variable.
3. For each boot option found:

• Retrieve the device path of the boot option.
• Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
•

:::
On

:::::::
failure,

:
if
:::
it

::
is

:::
an

:::::::::
OpenCore

:::::::
custom

::::::
entry

::::::
device

:::::
path,

::::::::::::
pre-construct

::::
the

:::::::::::::
corresponding

:::::::
custom

:::::
entry

:::
and

::::::::
succeed.

:

• Obtain the device handle by locating the device path of the resulting device path (ignore it on failure).
• Locate the device handle in the list of partition handles (ignore it if missing).
• For disk device paths (not specifying a bootloader), execute “bless” (may return > 1 entry).
• For file device paths, check for presence on the file system directly.
• On the OpenCore boot partition, exclude all OpenCore bootstrap files by file header checks.
• Mark device handle as used in the list of partition handles if any.
• Register the resulting entries as primary options and determine their types.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
4. For each partition handle:

• If the partition handle is marked as unused, execute “bless” primary option list retrieval.
In case a BlessOverride list is set, both standard and custom “bless” paths will be found.

• On the OpenCore boot partition, exclude OpenCore bootstrap files using header checks.
• Register the resulting entries as primary options and determine their types if found.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
• If a partition already has any primary options of the “Apple Recovery” type, proceed to the next handle.
• Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.
• Register the resulting entries as alternate auxiliary options and determine their types if found.

5. Custom entries and tools,
:::::::
except

::::
such

:::::::::::::::
pre-constructed

::::::::::
previously, are added as primary options without any

checks with respect to Auxiliary.
6. System entries, such as Reset NVRAM, are added as primary auxiliary options.

The display order of the boot options in the OpenCore picker and the boot process are determined separately from the
scanning algorithm.

The display order as follows:

• Alternate options follow corresponding primary options. That is, Apple recovery options will follow the relevant
macOS option whenever possible.

36

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for the console.

The text renderer supports colour arguments as a sum of foreground and background colours based on the UEFI
specification. The value for black background and for black foreground, 0, is reserved.

List of colour values and names:

• 0x00 — EFI_BLACK
• 0x01 — EFI_BLUE
• 0x02 — EFI_GREEN
• 0x03 — EFI_CYAN
• 0x04 — EFI_RED
• 0x05 — EFI_MAGENTA
• 0x06 — EFI_BROWN
• 0x07 — EFI_LIGHTGRAY
• 0x08 — EFI_DARKGRAY
• 0x09 — EFI_LIGHTBLUE
• 0x0A — EFI_LIGHTGREEN
• 0x0B — EFI_LIGHTCYAN
• 0x0C — EFI_LIGHTRED
• 0x0D — EFI_LIGHTMAGENTA
• 0x0E — EFI_YELLOW
• 0x0F — EFI_WHITE
• 0x00 — EFI_BACKGROUND_BLACK
• 0x10 — EFI_BACKGROUND_BLUE
• 0x20 — EFI_BACKGROUND_GREEN
• 0x30 — EFI_BACKGROUND_CYAN
• 0x40 — EFI_BACKGROUND_RED
• 0x50 — EFI_BACKGROUND_MAGENTA
• 0x60 — EFI_BACKGROUND_BROWN
• 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with the System text renderer. Setting a background different from black
could help with testing GOP functionality.

2. HibernateMode
Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

• None — Avoid hibernation (Recommended)
::::::
Ignore

::::::::::
hibernation

:::::
state.

• Auto — Use RTC and NVRAM detection.
• RTC — Use RTC detection.
• NVRAM — Use NVRAM detection.

::::
Note

:
:
::
If

:::
the

:::::::::
firmware

:::
can

:::::::
handle

::::::::::
hibernation

:::::
itself

::::::
(valid

:::
for

::::
Mac

::::
EFI

::::::::::
firmware),

:::::
then

::::
None

::::::
should

:::
be

::::::::
specified

::
to

::::::::
hand-off

::::::::::
hibernation

:::::
state

:::
as

::
is

::
to

::::::::::
OpenCore.

:

3. HideAuxiliary
Type: plist boolean
Failsafe: false
Description: Set to true to hide auxiliary entries from the picker menu.

An entry is considered auxiliary when at least one of the following applies:

• Entry is macOS recovery.
• Entry is macOS Time Machine.
• Entry is explicitly marked as Auxiliary.

38

• Entry is system (e.g. Reset NVRAM).

To display all entries, the picker menu can be reloaded into “Extended Mode” by pressing the Spacebar key.
Hiding auxiliary entries may increase boot performance on multi-disk systems.

4. LauncherOption
Type: plist string
Failsafe: Disabled
Description: Register the launcher option in the firmware preferences for persistence.

Valid values:

• Disabled — do nothing.
• Full — create or update the top priority boot option in UEFI variable storage at bootloader startup.

– For this option to work, RequestBootVarRouting is required to be enabled.
• Short — create a short boot option instead of a complete one.

– This variant is useful for some older types of firmware, typically from Insyde, that are unable to manage
full device paths.

•
::::::
System

::
—

::::::
create

:::
no

::::
boot

:::::::
option

:::
but

:::::::
assume

::::::::
specified

:::::::
custom

::::::
option

::
is
::::::::
blessed.

:

–
::::
This

:::::::
variant

::
is
::::::
useful

::::::
when

:::::::
relying

:::
on

::::::::::::::::::::::
ForceBooterSignature

::::
quirk

::::
and

::::::::::
OpenCore

:::::::::
launcher

::::
path

:::::::::::
management

::::::::
happens

:::::::
through

::::::
bless

:::::::
utilities

:::::::
without

:::::::::
involving

::::::::::
OpenCore.

:

This option allows integration with third-party operating system installation and upgrades (which may overwrite
the \EFI\BOOT\BOOTx64.efi file). The BOOTx64.efi file is no longer used for bootstrapping OpenCore if a
custom option is created. The custom path used for bootstrapping can be specified by using the LauncherPath
option.

Note 1 : Some types of firmware may have defective NVRAM implementation
::::::::
NVRAM

::::::::::::::
implementation

:::::
flaws, no

boot option support, or other incompatibilities. While unlikely, the use of this option may cause
:::::
result

::
in

:
boot

failures and should only be used exclusively on the boards known to be compatible. Refer to acidanthera/bug-
tracker#1222 for some known issues with

:::::::
affecting

:
Haswell and other boards.

Note 2 : While NVRAM resets executed from OpenCore would not typically erase the boot option created in
Bootstrap, executing NVRAM resets prior to loading OpenCore will erase the boot option. Therefore, for
significant implementation updates(e.g. in

:
,
::::
such

::
as

::::
was

::::
the

::::
case

::::
with

:
OpenCore 0.6.4), an NVRAM reset should

be performed
::::::::
executed

:
with Bootstrap disabled

:
,
:
after which it can be reenabled

:::::::::
re-enabled.

5. LauncherPath
Type: plist string
Failsafe: Default
Description: Launch path for the LauncherOption property.

Default points to OpenCore.efi. User specified paths, e.g. \EFI\SomeLauncher.efi, can be used to provide
custom loaders, which are supposed to load OpenCore.efi themselves.

6. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for the OpenCore picker.

Different OpenCore pickers may be configured through the attribute mask containing OpenCore-reserved
(BIT0~BIT15) and OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

• 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:
For Tools, OpenCore will attempt loading a custom icon and fallback to a default icon on failure:
– ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM.icns from icons directory.
– Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot Entries, OpenCore will attempt loading a custom icon and fallback to the volume icon or
the default icon on failure:
– <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

39

https://github.com/acidanthera/bugtracker/issues/1222
https://github.com/acidanthera/bugtracker/issues/1222

For all other entries, OpenCore will attempt loading a volume icon by searching as follows, and will fallback
to the default icon on failure:
– .VolumeIcon.icns file at Preboot volume in per-volume directory (/System/Volumes/Preboot/{GUID}/

when mounted at the default location within macOS) for APFS (if present).
– .VolumeIcon.icns file at the Preboot volume root (/System/Volumes/Preboot/, when mounted at

the default location within macOS) for APFS (otherwise).
– .VolumeIcon.icns file at the volume root for other filesystems.

Note 1 : The Apple picker partially supports placing a volume icon file at the operating system’s Data
volume root, /System/Volumes/Data/, when mounted at the default location within macOS. This approach
is flawed: the file is neither accessible to OpenCanopy nor to the Apple picker when FileVault 2, which is
meant to be the default choice, is enabled. Therefore, OpenCanopy does not attempt supporting Apple’s
approach. A volume icon file may be placed at the root of the Preboot volume for compatibility with both
OpenCanopy and the Apple picker, or use the Preboot per-volume location as above with OpenCanopy as a
preferred alternative to Apple’s approach.

Note 2 : Be aware that using a volume icon on any drive overrides the normal OpenCore picker behaviour
for that drive of selecting the appropriate icon depending on whether the drive is internal or external.

• 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
– .disk_label (.disk_label_2x) file near bootloader for all filesystems.
– <TOOL_NAME>.lbl (<TOOL_NAME>.l2x) file near tool for Tools.

Prerendered labels can be generated via the disklabel utility or the bless command. When disabled or
missing text labels, (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

• 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. This may however give less detail for the actual boot entry.

• 0x0008 — OC_ATTR_HIDE_THEMED_ICONS, prefers builtin icons for certain icon categories to match the theme
style. For example, this could force displaying the builtin Time Machine icon. Requires OC_ATTR_USE_VOLUME_ICON.

• 0x0010 — OC_ATTR_USE_POINTER_CONTROL, enables pointer control in the OpenCore picker when available.
For example, this could make use of mouse or trackpad to control UI elements.

7. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in the OpenCore picker.

For the macOS bootloader, screen reader preference is set in the preferences.efires archive in the isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support, this option is an independent
equivalent. Toggling screen reader support in both the OpenCore picker and the macOS bootloader FileVault 2
login window can also be done by using the Command + F5 key combination.

Note: The screen reader requires working audio support. Refer to the UEFI Audio Properties section for more
details.

8. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in the OpenCore picker.

In addition to action hotkeys, which are partially described in
:::
the

:
PickerMode section and are normally

::::::::
typically handled by Apple BDS, modifier keys handled by the operating system bootloader (boot.efi) also
exist. These keys allow changing the behaviour of the operating system by providing different boot modes.

On certain firmware, using modifier keys may be problematic due to driver incompatibilities. To workaround this
problem, this option allows registering certain hotkeys in a more permissive manner from within the OpenCore
picker. Such extensions include support for tapping on keys in addition to holding and pressing Shift along with
other keys instead of only pressing the Shift key, which is not detectable on many PS/2 keyboards.

This list of known modifier hotkeys includes:

• CMD+C+MINUS — disable board compatibility checking.
• CMD+K — boot release kernel, similar to kcsuffix=release.
• CMD+S — single user mode.

40

9 NVRAM

9.1 Introduction
Has plist dict type and allows to set volatile

:::
This

:::::::
section

::::::
allows

:::::::
setting

:::::::::::
non-volatile

:
UEFI variables commonly

referred
:::::::::
described as NVRAM variables. Refer to man nvram for more details. macOS

:::
The

:::::::
macOS

:::::::::
operating

:::::::
system

extensively uses NVRAM variables for OS — Bootloader — Firmware intercommunication, and thus supplying several
NVRAM .

::::::::
Hence,

::::
the

::::::
supply

:::
of

:::::::
several

::::::::
NVRAM

:::::::::
variables

:
is required for proper macOS functioning

:::
the

:::::::
proper

::::::::::
functioning

::
of

:::::::
macOS.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’

:::
the

:
NVRAM variable belongs to. macOS uses

:::
The

::::::::
macOS

:::::::::
operating

::::::
system

:::::::
makes

:::
use

:::
of

:
several

GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
• 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by
:::
the PlatformNVRAM or Generic subsections of

:::
the

:
PlatformInfo section.

Please ensure that variables of this section never collide with them, as
::
set

::
in
::::
this

:::::::
section

:::
do

:::
not

:::::::
conflict

:::::
with

:::::
items

:::
in

:::::
those

::::::::::
subsections

:::
as

:::
the

::::::::::::::
implementation

:
behaviour is undefined otherwise.

For proper macOS functioning it is often required to use
:::
The

:
OC_FIRMWARE_RUNTIME protocol implementation,

:
currently

offered as a part of
:::
the OpenRuntime driver. While it brings any

:
,
::
is

:::::
often

::::::::
required

:::
for

:::::::
macOS

:::
to

::::::::
function

::::::::
properly.

:::::
While

::::
this

::::::
brings

::::::
many benefits, there are certain limitations which arise depending on the use

::::
some

::::::::::
limitations

:::::
that

::::::
should

::
be

::::::::::
considered

:::
for

:::::::
certain

:::
use

:::::
cases.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used,

:
Boot-prefixed variable access is restricted and protected in a separate

namespace. To access the original variablestools have to ,
:::::
tools

:::::
must

:
be aware of

:::
the

:
OC_FIRMWARE_RUNTIME

logic.

9.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist multidata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get
::::
The EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes

::
of

:::::::
created

::::::::
variables

:::
are

:
set. Variables will only be set if not present or deleted. I.e.

:::::
That

::
is,

:
to overwrite an

existing variable value,
:
add the variable name to the Delete section. This approach enables to provide default

values till
:::
the

::::::::
provision

:::
of

::::::
default

::::::
values

:::::
until

:
the operating system takes the lead.

Note: If
:::
The

:::::::::::::::
implementation

:::::::::
behaviour

::
is
::::::::::
undefined

:::::
when

:::
the

:
plist key does not conform to GUID format,

behaviour is undefined
:::
the

::::::
GUID

::::::
format.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of

:
a NVRAM variable file named nvram.plist from EFI volume root.

This file must have
:
a
:
root plist dictionary type and contain two fields:

• Version — plist integer, file version, must be set to 1.
• Add — plist dictionary, equivalent to Add from config.plist.

52

https://en.wikipedia.org/wiki/Universally_unique_identifier

Variable loading happens prior to
:::
the Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not

overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema.

Third-party scripts may be used to create nvram.plist file. An example of such script can be found in Utilities.
The use of third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with
:::
the OpenCore EFI partition UUID.

Warning: This feature is very dangerous
:::
can

:::
be

::::::::::
dangerous, as it passes unprotected data to firmware variable

services. Use it only
::::
Only

::::
use when no hardware NVRAM implementation is provided by the firmware or it

:::::
when

:::
the

::::::::
NVRAM

:::::::::::::::
implementation is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting certain NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

* value can be used to accept all variables for certain GUID.

WARNING: Choose variables very carefully, as
::
the

:
nvram.plist

::
file

:
is not vaulted. For instance, do not put

::::::
include

:
boot-args or csr-active-config, as this can

::::
these

::::
can

::
be

:::::
used

::
to

:
bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value
::::
This

:::::
value

:::::::
should

::
be

:
enabled on most types of firmware but it is left

configurable
::
to

::::::::
account for firmware that may have issues with NVRAM variable storage garbage collection or

similar.

To
:::
The

::::::
nvram

:::::::::
command

:::
can

:::
be

::::
used

::
to

:
read NVRAM variable value from macOS , nvram could be used by concatenating

:::::
values

:::::
from

:::::::
macOS

:::
by

:::::::::::::
concatenating

:::
the

:
GUID and name variables separated by a : symbol. For example, nvram

7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by

:::
the

:
PlatformNVRAM or Generic subsections of

:::
the

:
PlatformInfo section.

Using PlatformInfo is the recommended way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

53

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0

– log-level=VALUE — log level bitmask.
∗ 0x01 — enables trace logging (default).

– serial=VALUE — enables serial logging.
∗ 0 — disables serial logging (default).
∗ 1 — enables serial logging for EXITBS:END onwards.
∗ 2 — enables serial logging for EXITBS:START onwards.
∗ 3 — enables serial logging when debug protocol is missing.
∗ 4 — enables serial logging unconditionally.

– timestamps=VALUE — enables timestamp logging.
∗ 0 — disables timestamp logging.
∗ 1 — enables timestamp logging (default).

– log=VALUE — deprecated starting from 10.15.
∗ 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
∗ 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)
∗ 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)

– debug=VALUE — deprecated starting from 10.15.
∗ 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)
∗ 2 — enables perf logging to /efi/debug-log in the device three
∗ 4 — enables timestamp printing for styled printf calls

– level=VALUE — deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but
0x80000000 is stripped from the binary, and this is the default value.

Note: To see
::::::
Enable

::::
the

:::::::::::
AppleDebug

::::::
option

::
to

:::::::
display

:
verbose output from boot.efi on modern macOS

versionsenable AppleDebug option. This will save the log to
:::
the

:
general OpenCore log

::
file. For versions before

10.15.4
:
, set bootercfg to log=1. This will print verbose output onscreen.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record
Enable performance log saving in boot.efi. Performance log is saved to physical memory and is pointed
by

::
to

::
by

::::
the efiboot-perf-record-data and efiboot-perf-record-size variables. Starting from 10.15.4

:
, it

can also be saved to
:::
the

:
OpenCore log by

::::::
setting

::::
the AppleDebug option.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name
Current saved host name. ASCII string.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:run-efi-updater
Override EFI firmware updating support in macOS (MultiUpdater, ThorUtil, and so on). Setting this to
No or alternative boolean-castable value will prevent any firmware updates in macOS starting with 10.10 at least.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute
Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted.
Missing variable or any other value means muted.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume
System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are
used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume
AppleHDA layout value to avoid too loud audio playback in the firmware.

56

10 PlatformInfo
Platform information is comprised

:::::::
consists

:
of several identification fields generated or filled manually to be compatible

with macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a
set of interfaces based on a database in YAML format. These fields are written to three destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than
one field and/or destination, so there are two ways to control their update process: manual, where all the values are
specified (the default), and semi-automatic, where (Automatic) only certain values are specified, and later used for
system configuration.

To inspect SMBIOS contents
::::
The dmidecode utility can be used . Version

::
to

:::::::
inspect

::::::::
SMBIOS

::::::::
contents

::::
and

::
a
:::::::
version

with macOS specific enhancements can be downloaded from Acidanthera/dmidecode.

10.1 Properties
1. Automatic

Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on

::
the

:
Generic section instead of using values from

::
the

:
DataHub,

NVRAM, and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

• When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
• When disabled Generic section is unused.

Warning: It is strongly discouraged to set
:::::::
Setting this option to false

:
is

::::::::
strongly

:::::::::::
discouraged when intending

to update platform information. The only reason to do so is if making
::
A

::::::
false

::::::
setting

::
is
::::::::
typically

:::::
only

:::::
valid

:::
for

minor corrections to SMBIOS values on legacy Apple hardware. In all other cases
:
, setting Automatic to false

may lead to hard to debug errors , due to
::::::::::::
hard-to-debug

::::::
errors

::::::::
resulting

:::::
from

:
inconsistent or invalid settings.

2. CustomMemory
Type: plist boolean
Failsafe: false
Description: Use custom memory configuration defined in the Memory section. This completely replaces any
existing memory configuration in SMBIOS, and is only active when UpdateSMBIOS is set to true.

3. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from

:::
the

:
Generic or DataHub sections depending

on
:::
the

::::::
setting

::
of

::::
the

:
Automatic value

::::::::
property.

Note: The implementation of the Data Hub protocol in EFI firmware on essentially
::::::::
virtually all systems, including

Apple hardware, means that existing Data Hub entries cannot be overridden, while new
:
.
:::::
New

:
entries are

added to the end
::
of

:::
the

:::::
Data

::::
Hub

::::::::
instead,

:
with macOS ignoring them

::
old

:::::::
entries. This can be worked around

by reinstalling
::::::::
replacing

:
the Data Hub protocol using the ProtocolOverrides section. Refer to the DataHub

protocol override description for details.

4. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from
:::
the Generic or PlatformNVRAM sections depending on

:::
the

:::::::
setting

::
of

:::
the

:
Automatic

value
:::::::
property. All the other fields are to be specified with

::
the

:
NVRAM section.

57

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

If UpdateNVRAM is set to false,
:
the aforementioned variables can be updated with

:::
the

:
NVRAM section. If

UpdateNVRAM is set to true
:
, the behaviour is undefined when any of the fields are present in

::
the

:
NVRAM section.

5. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from

::
the

:
Generic or SMBIOS sections depending on

:::
the

::::::
setting

:::
of

:::
the

:
Automatic value

::::::::
property.

6. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

• TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues on some types of firmware.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

• Custom —Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround
firmware overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires patch-
ing AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" - "EB9D2D35"
(in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using
:::
the

:
Custom approach is making

::::
that

::
it

::::::
makes

:
SMBIOS updates exclusive to macOS,

avoiding a collision with existing Windows activation and custom OEM software but potentially obstructing the
operation of Apple-specific tools.

7. UseRawUuidEncoding
Type: plist boolean
Failsafe: false
Description: Use raw encoding for SMBIOS UUIDs.

Each UUID AABBCCDD-EEFF-GGHH-IIJJ-KKLLMMNNOOPP is essentially a hexadecimal 16-byte number. It can be
encoded in two ways:

• Big Endian — by writing all the bytes as they are without making any order changes ({AA BB CC DD EE FF
GG HH II JJ KK LL MM NN OO PP}). This method is also known as RFC 4122 encoding or Raw encoding.

• Little Endian — by interpreting the bytes as numbers and using Little Endian byte representation ({DD
CC BB AA FF EE HH GG II JJ KK LL MM NN OO PP}).

:::
The

:
SMBIOS specification did not explicitly specify the encoding format for the UUID up to SMBIOS 2.6, where

it stated that Little Endian encoding shall be used. This led to the confusion in both firmware implementations
and system software as different vendors used different encodings prior to that.

• Apple uses
:::
the

:
Big Endian format everywhere but it ignores SMBIOS UUID within macOS.

• dmidecode uses
:::
the

:
Big Endian format for SMBIOS 2.5.x or lower and

:::
the

:
Little Endian

::::::
format

:
for 2.6

and newer. Acidanthera dmidecode prints all the three.
• Windows uses

:::
the

:
Little Endian format everywhere, but it

::::
this only affects the visual representation of

the values.

OpenCore always sets a recent SMBIOS version (currently 3.2) when generating the modified DMI tables. If
UseRawUuidEncoding is enabled, then

:::
the Big Endian format is used to store the SystemUUID data. Otherwise,

:::
the Little Endian

::::::
format is used.

Note: Since
::::
This

:::::::::
preference

:::::
does

:::
not

::::::
affect UUIDs used in DataHub and NVRAM

::
as

::::
they

:
are not standardised

and are added by Apple, this preference does not affect them. Unlike SMBIOS
:
,
:
they are always stored in the

Big Endian format.

8. Generic
Type: plist dictionary
Description: Update all fields in Automatic mode.

58

https://tools.ietf.org/html/rfc4122
https://github.com/acidanthera/dmidecode

Note: This section is ignored but may not be removed when Automatic is false.

9. DataHub
Type: plist dictionary
Description: Update Data Hub fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10. Memory
Type: plist dictionary
Description: Define custom memory configuration.

Note: This section is ignored and may be removed when CustomMemory is false.

11. PlatformNVRAM
Type: plist dictionary
Description: Update platform NVRAM fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

12. SMBIOS
Type: plist dictionary
Description: Update SMBIOS fields in non-Automatic mode.

Note: This section is ignored and may be removed when Automatic is true.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is
:::
can

:::
be

:
dangerous to use Apple

:::::::
“Apple”

:
in SMBIOS vendor fields for reasons given

:::::::
outlined

:
in the

SystemManufacturer description. However, certain firmware may not provide valid values otherwise, which could
obstruct the operation of some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit
:
, it is not possible to reboot to Windows

installed on a drive with EFI partition being
::
an

::::
EFI

::::::::
partition

:::::
that

::
is not the first partition on the disk.

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit
:
,
:
it is not possible to reboot

to Windows installed on a drive with EFI partition being
::
an

::::
EFI

::::::::
partition

::::
that

::
is
:
the first partition on the

disk.

3. MaxBIOSVersion
Type: plist boolean
Failsafe: false
Description: Sets BIOSVersion to 9999.999.999.999.999, recommended for legacy Macs when using Automatic
PlatformInfo

:
, to avoid BIOS updates in unofficially supported macOS versions.

4. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in “About This Mac

:
”.

Valid values:

• Auto — use the original PlatformFeature value.

59

Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to the
Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for

:::
the client Intel segment,

25 MHz for
:::
the

:
server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24

MHz by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special
EMI-reduction circuit as described in Acidanthera Bugtracker.

11. DevicePathsSupported
Type: plist integer, 32-bit
Failsafe: 0 (Not installed)
Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Macs.

12. SmcRevision
Type: plist data, 6 bytes
Failsafe: Empty (Not installed)
Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

13. SmcBranch
Type: plist data, 8 bytes
Failsafe: Empty (Not installed)
Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

14. SmcPlatform
Type: plist data, 8 bytes
Failsafe: Empty (Not installed)
Description: Sets RPlt in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RPlt key.

10.4 Memory Properties
1. DataWidth

Type: plist integer, 16-bit
Failsafe: 0xFFFF (unknown)
SMBIOS: Memory Device (Type 17) — Data Width
Description: Specifies the data width, in bits, of the memory. A DataWidth of 0 and a TotalWidth of 8
indicates that the device is being used solely to provide 8 error-correction bits.

2. Devices
Type: plist array
Failsafe: Empty
Description: Specifies the custom memory devices to be added.

Designed to be filled with plist dictionary values, describing each memory device. See the Memory Devices
Properties section below. This should include all memory slots, even if unpopulated.

3. ErrorCorrection
Type: plist integer, 8-bit
Failsafe: 0x03
SMBIOS: Physical Memory Array (Type 16) — Memory Error Correction
Description: Specifies the primary hardware error correction or detection method supported by the memory.

• 0x01 — Other
• 0x02 — Unknown
• 0x03 — None

62

https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166

• 0x04 — Parity
• 0x05 — Single-bit ECC
• 0x06 — Multi-bit ECC
• 0x07 — CRC

4. FormFactor
Type: plist integer, 8-bit
Failsafe: 0x02
SMBIOS: Memory Device (Type 17) — Form Factor
Description: Specifies the form factor of the memory. On Macs, this should typically be DIMM or SODIMM.
Commonly used form factors are listed below.

When CustomMemory is false, this value is automatically set based on Mac product name.

:::::
When

:::::::::::
Automatic

::
is

:::::
true,

::::
the

::::::::
original

:::::
value

:::::
from

::::
the

::::
the

:::::::::::::
corresponding

::::
Mac

::::::
model

:::::
will

:::
be

:::
set

::
if
:::::::::
available.

:::::::::
Otherwise,

::::
the

:::::
value

:::::
from

:::::::::::::
OcMacInfoLib

:::
will

:::
be

::::
set.

::::::
When

::::::::::
Automatic

:
is

::::::
false

:
,
:
a
:::::::::::::
user-specified

:::::
value

::::
will

:::
be

::
set

::
if
:::::::::
available.

::::::::::
Otherwise,

::::
the

:::::::
original

:::::
value

:::::
from

:::
the

:::::::::
firmware

:::
will

:::
be

::::
set.

::
If

:::
no

:::::
value

::
is

:::::::::
provided,

:::
the

::::::::
fallback

:::::
value

:
(
::::
zero

:
)
::::
will

::
be

::::
set.

:

• 0x01 — Other
• 0x02 — Unknown
• 0x09 — DIMM
• 0x0D — SODIMM
• 0x0F — FB-DIMM

5. MaxCapacity
Type: plist integer, 64-bit
Failsafe: 0
SMBIOS: Physical Memory Array (Type 16) — Maximum Capacity
Description: Specifies the maximum amount of memory, in bytes, supported by the system.

6. TotalWidth
Type: plist integer, 16-bit
Failsafe: 0xFFFF (unknown)
SMBIOS: Memory Device (Type 17) — Total Width
Description: Specifies the total width, in bits, of the memory, including any check or error-correction bits. If
there are no error-correction bits, this value should be equal to DataWidth.

7. Type
Type: plist integer, 8-bit
Failsafe: 0x02
SMBIOS: Memory Device (Type 17) — Memory Type
Description: Specifies the memory type. Commonly used types are listed below.

• 0x01 — Other
• 0x02 — Unknown
• 0x0F — SDRAM
• 0x12 — DDR
• 0x13 — DDR2
• 0x14 — DDR2 FB-DIMM
• 0x18 — DDR3
• 0x1A — DDR4
• 0x1B — LPDDR
• 0x1C — LPDDR2
• 0x1D — LPDDR3
• 0x1E — LPDDR4

8. TypeDetail
Type: plist integer, 16-bit
Failsafe: 0x4
SMBIOS: Memory Device (Type 17) — Type Detail
Description: Specifies additional memory type information.

63

SMBIOS: System Enclosure or Chassis (Type 3) — Type
Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

20. ChassisVersion
Type: plist string
Failsafe: Empty (OEM specified)
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

21. ChassisSerialNumber
Type: plist string
Failsafe: Empty (OEM specified)
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

22. ChassisAssetTag
Type: plist string
Failsafe: Empty (OEM specified)
SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature
Type: plist integer, 32-bit
Failsafe: 0xFFFFFFFF (OEM specified on Apple hardware, do not provide the table otherwise)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature
Description: Platform features bitmask. Refer to AppleFeatures.h for more details. Missing on older Macs.

24. SmcVersion
Type: plist data, 16 bytes
Failsafe: All zero (OEM specified on Apple hardware, do not provide the table otherwise)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version
Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs.

25. FirmwareFeatures
Type: plist data, 8 bytes
Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

26. FirmwareFeaturesMask
Type: plist data, 8 bytes
Failsafe: 0 (OEM specified on Apple hardware, 0 otherwise)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

27. ProcessorType
Type: plist integer, 16-bit
Failsafe: 0 (Automatic)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

Automatic value generation tries to provide
:::::::
attempts

:::
to

:::::::
provide

:::
the

:
most accurate value for the currently installed

CPU. When this failsplease make sure to create
:
,
::::::
please

:::::
raise an issue and provide sysctl machdep.cpu and

dmidecode output. For a full list of available values and their limitations (the value will only apply if the CPU
core count matches)refer to ,

:::::
refer

::
to

::::
the Apple SMBIOS definitions header here.

68

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/bugtracker/issues
https://github.com/acidanthera/dmidecode
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load

::::::
loading

:
additional UEFI modules and/or apply tweaks for

::
as

::::
well

::
as

::::::::
applying

:::::::
tweaks

::
to

:
the onboard firmware. To inspect firmware contents, apply modifications and perform

upgrades UEFITool and supplementary utilities can be used.

11.2 Drivers
Depending on the firmware

:
, a different set of drivers may be required. Loading an incompatible driver may lead the

system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

69

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

AudioDxe* HDA audio support driver in UEFI firmware for most Intel and some other analog audio
controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe.

CrScreenshotDxe* Screenshot making driver saving images to the root of OpenCore partition (ESP) or any avail-
able writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe
driver by Nikolaj Schlej.

ExFatDxe Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmware. For Sandy Bridge and earlier CPUs, the ExFatDxeLegacy driver should be used
due to the lack of RDRAND instruction support.

HfsPlus Recommended. Proprietary HFS file system driver with bless support commonly found in
Apple firmware. For Sandy Bridge and earlier CPUs, the HfsPlusLegacy driver should be
used due to the lack of RDRAND instruction support.

HiiDatabase* HII services support driver from MdeModulePkg. This driver is included in most types of
firmware starting with the Ivy Bridge generation. Some applications with GUI, such as UEFI
Shell, may need this driver to work properly.

EnhancedFatDxe FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmware and cannot
be used from OpenCore. Several types of firmware have defective FAT support implementation
that may lead to corrupted filesystems on write attempts. Embedding this driver within the
firmware may be required in case writing to the EFI partition is needed during the boot
process.

NvmExpressDxe* NVMe support driver from MdeModulePkg. This driver is included in most firmware starting
with the Broadwell generation. For Haswell and earlier, embedding it within the firmware
may be more favourable in case a NVMe SSD drive is installed.

OpenCanopy* OpenCore plugin implementing graphical interface.
OpenRuntime* OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol.
OpenUsbKbDxe* USB keyboard driver adding support for AppleKeyMapAggregator protocols on top of a

custom USB keyboard driver implementation. This is an alternative to builtin KeySupport,
which may work better or worse depending on the firmware.

OpenPartitionDxe* Partition management driver with Apple Partitioning Scheme support. This driver can be
used to support loading older DMG recoveries such as macOS 10.9 using Apple Partitioning
Scheme. OpenDuet already includes this driver.

Ps2KeyboardDxe* PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some types of firmware may not
include this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe
this driver has no AppleKeyMapAggregator support and thus requires KeySupport to be
enabled.

Ps2MouseDxe* PS/2 mouse driver from MdeModulePkg. Some very old laptop firmware may not include
this driver but it is necessary for the touchpad to work in UEFI graphical interfaces such as
OpenCanopy.

OpenHfsPlus* HFS file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmware. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

UsbMouseDxe* USB mouse driver from MdeModulePkg. Some virtual machine firmware such as OVMF may
not include this driver but it is necessary for the mouse to work in UEFI graphical interfaces
such as OpenCanopy.

XhciDxe* XHCI USB controller support driver from MdeModulePkg. This driver is included in most
types of firmware starting with the Sandy Bridge generation. For earlier firmware or legacy
systems, it may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) the same command
used for OpenCore compilation can be taken, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

70

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk

formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported, most
common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

• Audio type can be OCEFIAudio for OpenCore audio files or AXEFIAudio for macOS bootloader audio files.
• Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and

Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.
• Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to

APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to OC_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is OCEFIAudio_VoiceOver_Boot.mp3.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in OcBinaryData repository.

3. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some types of firmware, particularly those made by Apple, only connect the boot drive to speed up the
boot process. Enable this option to be able to see all the boot options when running multiple drives.

4. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers.

5. Input
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for input (keyboard and mouse) in the Input Properties section
below.

6. Output
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for output (text and graphics) in the Output Properties section
below.

7. ProtocolOverrides
Type: plist dict
Failsafe: None
Description: Force builtin versions of certain protocols described in the ProtocolOverrides Properties section
below.

Note: all protocol instances are installed prior to driver loading.

8. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in the Quirks Properties section below.

73

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

9. ReservedMemory
Type: plist array
Description: Designed to be filled with plist dict values, describing memory areas exquisite to particular
::::::::
exclusive

::
to

:::::::
specific

:
firmware and hardware functioning, which should not be used by the operating system. An

example
::::::::
Examples

:
of such memory region could be

::::::
regions

:::::
could

:::
be

:::
the

:
second 256 MB corrupted by

:::
the

:
Intel

HD 3000 or an area with faulty RAM. See the ReservedMemory Properties section below.

11.7 APFS Properties
1. EnableJumpstart

Type: plist boolean
Failsafe: false
Description: Load embedded APFS drivers from APFS containers.

:::
An APFS EFI driver is bundled in all bootable APFS containers. This option performs

:::
the

:
loading of signed APFS

drivers with respect to
:::::::::
(consistent

:::::
with

:::
the

:
ScanPolicy. See more details in

:
).
::::::
Refer

::
to

::::
the

:
“EFI Jumpstart”

section of
:::
the Apple File System Reference

:::
for

:::::
more

::::::
details.

2. GlobalConnect
Type: plist boolean
Failsafe: false
Description: Perform full device connection during APFS loading.

Instead of
::::::
Every

::::::
handle

::
is
::::::::::
connected

::::::::::
recursively

:::::::
instead

::
of

::::
the partition handle connection normally

::::::::
typically

used for APFS driver loadingevery handle is connected recursively. This may take more time than usual but
can

:::::
result

::
in

:::::::::
additional

:::::
time

:::::
being

::::::
taken

:::
but

::::
can

::::::::::
sometimes be the only way to access APFS partitions on some

types of firmware
::::::
certain

:::::::::
firmware,

:
such as those on older HP laptops.

3. HideVerbose
Type: plist boolean
Failsafe: false
Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

4. JumpstartHotPlug
Type: plist boolean
Failsafe: false
Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only
:::::::
Permits

::::::
APFS

::::
USB

::::
hot

::::
plug

::::::
which

:::::::
enables

:::::::
loading

::::::
APFS

:::::::
drivers,

:::::
both

at OpenCore startup but also during the OpenCore picker . This permits APFS USB hot plug.
:::
and

:::::::
during

:::::::::
OpenCore

::::::
picker

:::::::
dusplay.

:
Disable if not required.

5. MinDate
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver date.

:::
The

:
APFS driver date connects

:::
the APFS driver with the calendar release date. Older versions of APFS drivers

may contain unpatched vulnerabilities , which
:::::
Apple

::::::::::
ultimately

::::::
drops

::::::::
support

:::
for

:::::
older

:::::::
macOS

::::::::
releases

::::
and

:::::
APFS

:::::::
drivers

:::::
from

::::
such

::::::::
releases

::::
may

:::::::
contain

:::::::::::::
vulnerabilities

:::::
that can be used to inflict harm to the computer

::::::::::
compromise

::
a
:::::::::
computer

::
if

::::
such

::::::
drivers

::::
are

::::
used

:::::
after

:::::::
support

:::::
ends. This option permits restricting APFS drivers

to only recent releases
:::::::
current

:::::::
macOS

:::::::
versions.

• 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018/06/21.

• -1 — permit any release date to load (strongly discouraged).
• Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be

found in OpenCore boot log and OcApfsLib.

6. MinVersion
Type: plist integer

74

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Failsafe: 0
Description: Minimal allowed APFS driver version.

:::
The

:
APFS driver version connects

:::
the APFS driver with the macOS release. APFS drivers from

:::::
Apple

::::::::::
ultimately

:::::
drops

:::::::
support

:::
for

:
older macOS releases will become unsupported and thus may contain unpatched vulnerabilities

, which
:::
and

::::::
APFS

:::::::
drivers

::::
from

:::::
such

:::::::
releases

::::
may

:::::::
contain

:::::::::::::
vulnerabilities

:::::
that can be used to inflict harm to the

computer
::::::::::
compromise

::
a
:::::::::
computer

::
if

:::::
such

::::::
drivers

::::
are

::::
used

:::::
after

::::::::
support

::::
ends. This option permits restricting

APFS drivers to only modern
::::::
current

:
macOS versions.

• 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

• -1 — permit any version to load (strongly discouraged).
• Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS

versions can be found in OpenCore boot log and OcApfsLib.

11.8 Audio Properties
1. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

Normally this contains
::::
This

::::::::
typically

::::::::
contains

::::
the first audio codec address on the builtin analog audio controller

(HDEF). Audio codec addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative
:
,
:
this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in

IOHDACodecAddress field.

2. AudioDevice
Type: plist string
Failsafe: Empty
Description: Device path of the specified audio controller for audio support.

Normally this
::::
This

::::::::
typically

:
contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0).

The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative
:
,
:
gfxutil -f HDEF command can be used in macOS. Specifying

::
an

:
empty device path will

result in the first available audio controller to be
:::::
being

:
used.

3. AudioOut
Type: plist integer
Failsafe: 0
Description: Index of the output port of the specified codec starting from 0.

Normally this
::::
This

::::::::
typically

:
contains the index of the green out of the builtin analog audio controller (HDEF).

The number of output nodes (N) in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

4. AudioSupport
Type: plist boolean

75

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume
Type: plist integer
Failsafe: 0
Description: Minimal heard volume level from 0 to 100.

Screen
:::
The

::::::
screen

:
reader will use this volume level , when the calculated volume level is less

:::::
lower

:
than

MinimumVolume . Boot chime sound
:::
and

::::
the

:::::
boot

:::::
chime

:
will not play if the calculated volume level is less

:::::
lower

than MinimumVolume.

6. PlayChime
Type: plist string
Failsafe: Auto
Description: Play chime sound at startup.

Enabling this setting plays boot chime through
:::
the

:::::
boot

::::::
chime

:::::
using

::::
the

:
builtin audio support. Volume

:::
The

::::::::
volume

:
level is determined by

:::
the

:
MinimumVolume and VolumeAmplifier settings and

::
as

::::
well

:::
as

::::
the

SystemAudioVolume NVRAM variable. Possible values include:

• Auto — Enables chime when StartupMute NVRAM variable is not present or set to 00.
• Enabled — Enables chime unconditionally.
• Disabled — Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware
is able to play

:::
the boot chime.

7. ResetTrafficClass
Type: plist boolean
Failsafe: false
Description: Set HDA Traffic Class Select Register to TC0.

AppleHDA kext will function correctly only if TCSEL register is configured to use TC0 traffic class. Refer to Intel
I/O Controller Hub 9 (ICH9) Family Datasheet (or any other ICH datasheet) for more details about this register.

Note: This option is independent from AudioSupport. If AppleALC is used it is preferred to use AppleALC
alctsel property instead.

8. SetupDelay
Type: plist integer
Failsafe: 0
Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor-specific delay after the reconfiguration (e.g. volume setting). This option makes it
configurable. A typical delay can be up to 0.5 seconds.

9. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier

100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

76

11.9 Input Properties
1. KeyFiltering

Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input
protocols. This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables
107 and 108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds

::
10

:::
ms

:::::
units.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set
::::::
setting

:
this timeout based on the platform. The recommended value that works on

:::
for

the majority of the platforms is 5 milliseconds
:
(
::
50

:::::::::::
milliseconds). For reference, holding one key on VMware will

repeat it roughly every 2
::
20 milliseconds and the same value for APTIO V is 3-4

:::::
30-40 milliseconds. Thus

:
, it is

possible to set a slightly lower value on faster platforms and
:
a
:
slightly higher value on slower platforms for more

responsive input.

Pressing keys one after the other results in delays of at least 6
::
60 and 10

:::
100 milliseconds for the same platforms.

Note: Some platforms may require different values,
:::::
which

:::::
may

::
be

:
higher or lower. For example, when detecting

key misses in OpenCanopy,
:
try increasing this value (e.g. to 10), and when detecting key stall, try decreasing

this value. Since every platform is different
:
,
:
it may be reasonable

:::::::
prudent

:
to check every value from 1 to 25

:
(

::
10

::
to

::::
250

::::::::::::
milliseconds).

3. KeySupport
Type: plist boolean
Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput, also known as
AptioInputFix, to fill

:::
the

:
AppleKeyMapAggregator database for input functioning. In case

:::::
cases

::::::
where

:
a

separate driver is used, such as OpenUsbKbDxe
:
is
:::::
used, this option should never be enabled.

4. KeySupportMode
Type: plist string
Failsafe: Auto
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

• Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
• V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
• V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
• AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

5. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

6. PointerSupport
Type: plist boolean

77

Failsafe: false
Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through certain OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is defective.

7. PointerSupportMode
Type: plist string
Failsafe: Empty
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on certain Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116. The value of this property cannot be empty if
PointerSupport is enabled.

8. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update
::::::::
updating

::::
the

:
firmware architecture timer period with the specified value in 100

nanosecond units. Setting a lower value generally
:::::::
typically

:
improves performance and responsiveness of the

interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmware generally
:::::::
typically

:
supports ConsoleControl with two rendering modes: Graphics and Text.

Some types of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect
text to only be shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by
UEFI specification, exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

• BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
• BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.
• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms
:
,
:
it is necessary to enable

ProvideConsoleGop ,
:::
and

:
set Resolution to Max.

:::
The

:
BuiltinText variant is an alternative BuiltinGraphics

for some very old and defective laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. Typically, the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, such as the MacPro5,1, may have incompatible console output when using modern GPUs, and
thus only BuiltinGraphics may work for them in such cases. NVIDIA GPUs may require additional firmware
upgrades.

78

https://github.com/LongSoft/UEFITool/pull/116
https://github.com/acidanthera/bugtracker/issues/1280
https://github.com/acidanthera/bugtracker/issues/1280

Failsafe: false
Description: Replaces Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore
:::::::::
OpenCore

::::
and

:::
the

:::::::
macOS

:::::::::::
bootloader to play

sounds and signals for screen reading or audible error reporting. Supported protocols are beep generation
and VoiceOver.

::::
The VoiceOver protocol is specific to Gibraltar machines (T2) and is not supported before

macOS High Sierra (10.13). Instead older
:::::
Older macOS versions use AppleHDA protocol, which is currently not

implemented
:::
the

::::::::::
AppleHDA

::::::::
protocol

:::::::
(which

::
is

:::
not

:::::::::
currently

::::::::::::
implemented)

:::::::
instead.

Only one set of audio protocols can be available at a time, so
:::
this

::::::
setting

:::::::
should

::
be

::::::::
enabled in order to get

::::::
enable

audio playback in
:::
the OpenCore user interface on Mac system

::::::
systems

:
implementing some of these protocolsthis

setting should be enabled.

Note: Backend
::::
The

::::::::
backend audio driver needs to be configured in UEFI Audio section for these protocols to be

able to stream audio.

2. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs and legacy Macs.

Note: This option is advisable on certain Macs, such as the MacPro5,1, that are APFS compatible but on which
the Apple Boot Policy protocol has recovery detection issues.

3. AppleDebugLog
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Debug Log protocol with a builtin version.

4. AppleEvent
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Event protocol with a builtin version. This may be used to ensure FileVault 2
compatibility on VMs and legacy Macs.

5. AppleFramebufferInfo
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs and legacy Macs to improve compatibility with legacy EfiBoot such as the one
in macOS 10.4.

Note: The current implementation of this property results in it only being active when GOP is available (it is
always equivalent to false otherwise).

6. AppleImageConversion
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Image Conversion protocol with a builtin version.

7. AppleImg4Verification
Type: plist boolean
Failsafe: false
Description: Replaces the Apple IMG4 Verification protocol with a builtin version. This protocol is used to
verify im4m manifest files used by Apple Secure Boot.

8. AppleKeyMap
Type: plist boolean
Failsafe: false
Description: Replaces Apple Key Map protocols with builtin versions.

9. AppleRtcRam
Type: plist boolean

81

Failsafe: false
Description: Replaces the Apple RTC RAM protocol with a builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to certain RTC memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as
a data array.

10. AppleSecureBoot
Type: plist boolean
Failsafe: false
Description: Replaces the Apple Secure Boot protocol with a builtin version.

11. AppleSmcIo
Type: plist boolean
Failsafe: false
Description: Replaces the Apple SMC I/O protocol with a builtin version.

This protocol replaces
:::
the

:
legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.

However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean
Failsafe: false
Description: Replaces the Apple User Interface Theme protocol with a builtin version.

13. DataHub
Type: plist boolean
Failsafe: false
Description: Replaces the Data Hub protocol with a builtin version.

Note: This will discard all previous entries if the protocol was already installed, so all properties required for
:::
the

safe operation of the system must be specified in your configuration
:::
the

::::::::::::
configuration

:::
file.

14. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Replaces the Device Property protocol with a builtin version. This may be used to ensure full
compatibility on VMs and legacy Macs.

Note: This will discard all previous entries if the protocol was already installed, so all properties required for safe
operation of the system must be specified in your configuration

:::
the

::::::::::::
configuration

:::
file.

15. FirmwareVolume
Type: plist boolean
Failsafe: false
Description: Wraps Firmware Volume protocols,

:
or installs a new version

:
, to support custom cursor images for

FileVault 2. Set to true to ensure FileVault 2 compatibility on anything other than on VMs and legacy Macs.

Note: Several virtual machinesincluding VMware
:
,
::::::::
including

:::::::::
VMware,

:
may have corrupted cursor images in

HiDPI mode and thus, may also require enabling this setting.

16. HashServices
Type: plist boolean
Failsafe: false
Description: Replaces Hash Services protocols with builtin versions. Set to true to ensure FileVault 2
compatibility on platforms with defective SHA-1 hash implementations. This can be determined by an invalid
cursor size when UIScale is set to 02. Platforms earlier than APTIO V (Haswell and older) are typically affected.

17. OSInfo
Type: plist boolean
Failsafe: false
Description: Replaces the OS Info protocol with a builtin version. This protocol is typically used by the
firmware and other applications to receive notifications from the macOS bootloader.

82

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of

:::
are

:::::::::
sometimes

:::::::::
necessary

:::
for

:::::::
various reasons. While a compatible board identifier and CPUID are the obvious requirements

for proper functioning of an older operating system, there are many other less obvious things to consider. This section
tries to cover

:::::
covers

:
a common set of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation
media for every minor release. For compatible distributions of such, download a device-specific image and modify it if
necessary. Visit this archived Apple Support article for a list of the bundled device-specific builds for legacy operating
systems. However, as this may not always be accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use
:::
the

:
Apple Partitioning Scheme and require

:::
the OpenPartitionDxe driver to

run DMG recovery and installation (included in OpenDuet). It is possible to set DmgLoading to Disabled to run
the recovery without DMG loading avoiding the need for OpenPartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

• SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

• Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

• All previous issues apply.

• SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here (MEGA Mirror), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note
that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg

86

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://archive.org/details/10.6.7-10j3250-disk-images
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained Vaulting section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, OpenCore.efi, custom launchers) used on this system
with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers, Microsoft UEFI Driver Signing CA will also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from Boot Camp is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that 7-Zip may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this is typically not required).

• To access Apple filesystems such as HFS+ and APFS, separate software may need to be installed. Some of the
known utilities are: Apple HFS+ driver (workaround for Windows 10), HFSExplorer, MacDrive, Paragon APFS,
Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as
this often leads to irrecoverable data loss.

88

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer

Why do I see Basic data partition in
:::
the

:
Boot Camp Startup Disk control panel?

:::
The

:
Boot Camp control panel uses

:::
the

:
GPT partition table to obtain each boot option name. After installing Windows

separatelythe partition will have
:
,
:::
the

:::::::::
partition

:::
has

:
to be relabelled manually. This can be done with many utilities

including
::
the

:
open-source gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF00 EFI system partition
3 1226752 1259519 16.0 MiB 0C01 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 4: Relabeling Windows volume

How to
:::
do

:
I
:
choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon
Driver disrupt certain macOS functionality, including

:::
the Startup Disk preference pane normally used for operating

system selection. While the recommended option remains not to use such drivers as they commonly corrupt the
filesystem, and prefer the driver bundled with macOS with optional write support (command or GUI), there still exist
vendor-specific workarounds for their products: Tuxera, Paragon, etc.

12.4 Debugging
Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OpenCore Debug page. For IDA Pro, version 7.3 or newer is needed,
and Debugging the XNU Kernel with IDA Pro may also help.

To obtain the log during boot serial port debugging can be used. Serial port debugging is enabled in Target, e.g. 0xB
for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration option. For macOS the
best choice is CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND to USB
UART GND. Use screen utility to get the output, or download GUI software, such as CoolTerm.

89

https://sourceforge.net/projects/gptfdisk
https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus, motherboard “TX” must be connected to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output debug=0x8 boot argument is needed.

12.5 Tips and Tricks
1. How to

:::
do

:
I
:
debug boot failure

:::::::
failures?

Normally it is enough to obtain
:::::::::
Obtaining

:
the actual error message

:
is
:::::::
usually

:::::::::
adequate. For this,

:
ensure that:

• A DEBUG or NOOPT version of OpenCore is used.
• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, such as DEBUG_ERROR, stop booting: Misc→ Security→ HaltLevel = 0x80000000.
• Watch Dog is disabled to prevent automatic reboot: Misc → Debug → DisableWatchDog = true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available workarounds in the Quirks sections one by one. For early boot
troubleshooting, for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore)
may help to see early debug messages.

2. How to
:::
do

:
I
:
debug macOS boot failure

::::::::
failures?

• Refer to boot-args values such as debug=0x100, keepsyms=1, -v, and similar.
• Do not forget about AppleDebug and ApplePanic properties.
• Take care of Booter, Kernel, and UEFI quirks.
• Consider using serial port to inspect early kernel boot failures. For this debug=0x108, serial=5, and

msgbuf=1048576 boot arguments are needed. Refer to the patches in Sample.plist when dying before serial
init.

• Always read the logs carefully.

3. How to
:::
do

:
I
:
customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to
:::
do

:
I
:
choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk preference, or the Windows Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several types of firmware
deleting incompatible boot options, potentially including those created by macOS, users are strongly encouraged
to use the RequestBootVarRouting quirk, which will preserve the selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load the OpenCore picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online macrecovery.py can be used.

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and
softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.

90

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS

	Introduction
	Generic Terms

	Configuration
	Configuration Terms
	Configuration Processing

	ACPI
	Introduction
	Properties
	Quirks Properties

	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Patch Properties

	Kernel
	Introduction
	Properties
	Force Properties
	Quirks Properties
	Scheme Properties

	Misc
	Introduction
	Boot Properties

	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables

	PlatformInfo
	Properties
	Generic Properties
	Memory Properties

	UEFI
	Introduction
	Drivers
	APFS Properties
	Audio Properties
	Input Properties
	Output Properties

	Troubleshooting
	Legacy Apple OS
	Windows support
	Debugging
	Tips and Tricks

