
OpenCore

Reference Manual (0.6.6
:::
.7)

[2021.02.06]

Copyright ©2018-2021 vit9696

4 ACPI

4.1 Introduction
ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PRW) for
implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided
as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA. GUI front-end to iASL
compiler can be downloaded from Acidanthera/MaciASL.

ACPI changes apply globally (to every operating system) with the following effective order:

• Patch is processed.
• Delete is processed.
• Add is processed.
• Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection, which is not possible
before the operating system boots according to the ACPI specification, operating system chainloading, and harder
ACPI debugging. For this reason it may be required to carefully use _OSI method when writing the changes.

Applying the patches early makes it possible to write so called “proxy” patches, where the original method is patched
in the original table and is implemented in the patched table.

There are many places providing ACPI tables and workarounds. Commonly used ACPI tables are provided with
OpenCore, VirtualSMC, VoodooPS2, and WhateverGreen releases. Besides those there are several third-party
instructions commonly found on AppleLife in Laboratory and DSDT subforums (e.g. Battery register splitting guide).
A slightly more user-friendly explanation of some tables included with OpenCore can also be found in Dortania’s
Getting started with ACPI guide. For more exotic cases there also are several other places including daliansky’s ACPI
sample collection, but the quality of the suggested solutions will vary from case to case.

4.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected tables from OC/ACPI directory.

Designed to be filled with plist dict values, describing each add entry. See Add Properties section below.

2. Delete
Type: plist array
Failsafe: Empty
Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each delete entry. See Delete Properties section below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in Quirks Properties section below.

10

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases
https://applelife.ru/forums/xakintosh.67
https://applelife.ru/forums/dsdt.129
https://applelife.ru/posts/498967
https://dortania.github.io
https://dortania.github.io/Getting-Started-With-ACPI
https://github.com/daliansky
https://github.com/daliansky/OC-little
https://github.com/daliansky/OC-little

4.3 Add Properties
1. Comment

Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI table will not be added unless set to true.

3. Path
Type: plist string
Failsafe: Emptystring
Description: File paths meant to be loaded as ACPI tables. Example values include DSDT.aml, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from OC/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

4.4 Delete Properties
1. All

Type: plist boolean
Failsafe: false
Description: If set to true, all ACPI tables matching the condition will be deleted. Otherwise only first matched
table.

2. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI table will not be removed unless set to true.

4. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

5. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

6. TableSignature
Type: plist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

Note: Make sure not to specify table signature when the sequence needs to be replaced in multiple places.
Especially when performing different kinds of renames.

11

4.5 Patch Properties
1. Comment

Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Count
Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI patch will not be used unless set to true.

4. Find
Type: plist data
Failsafe: Emptydata
Description: Data to find. Must equal to Replace in size.

5. Limit
Type: plist integer
Failsafe: 0

:
0
:::::::
(Search

::::::
entire

:::::
ACPI

::::::
table)

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

6. Mask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must

::::
Must

:::
be equal to Replace in size otherwise

:
if

:::
set.

7. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Emptydata
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Can be set to empty data to be ignored. Must

:::::
Must

::
be

:
equal to Replace in size otherwise

:
if
:::
set.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type: plist data, 4 bytes

12

5.3 MmioWhitelist Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

2. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This address will be devirtualised unless set to true.

5.4 Patch Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Booter patch architecture (Any, i386, x86_64).

2. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Count
Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This booter patch will not be used unless set to true.

5. Find
Type: plist data
Failsafe: Emptydata
Description: Data to find. This must equal to Replace in size.

6. Identifier
Type: plist string
Failsafe: Emptystring
Description: Apple for macOS booter (generally boot.efi); or a name with suffix (e.g. bootmgfw.efi) for a
specific booter; or Any / empty string (failsafe) to match any booter.

7. Limit
Type: plist integer
Failsafe: 0

:
0
:::::::
(Search

::::
the

:::::
entire

:::::::
booter)

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole booter.

16

8. Mask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Find in size otherwise

::
if

:::
set.

9. Replace
Type: plist data
Failsafe: Emptydata
Description: Replacement data of one or more bytes.

10. ReplaceMask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Can be set to empty data to be ignored. Must

:::::
Must

::
be

:
equal to Replace in size otherwise

:
if
:::
set.

11. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

5.5 Quirks Properties
1. AllowRelocationBlock

Type: plist boolean
Failsafe: false
Description: Allows booting macOS through a relocation block.

Relocation block is a scratch buffer allocated in lower 4 GB to be used for loading the kernel and related structures
by EfiBoot on firmwares where lower memory is otherwise occupied by the (assumed to be) non-runtime data.
Right before kernel startup the relocation block is copied back to lower addresses. Similarly all the other addresses
pointing to relocation block are also carefully adjusted. Relocation block can be used when:

• No better slide exists (all the memory is used)
• slide=0 is forced (by an argument or safe mode)
• KASLR (slide) is unsupported (this is macOS 10.7 or older)

This quirk requires ProvideCustomSlide to also be enabled and generally needs AvoidRuntimeDefrag to work
correctly. Hibernation is not supported when booting with a relocation block (but relocation block is not always
used when the quirk is enabled).

Note: While this quirk is required to run older macOS versions on platforms with used lower memory it is
not compatible with some hardware and macOS 11. In this case one may try to use

::::
such

::::::
cases,

:::::::
consider

::::::
using

EnableSafeModeSlide instead.

2. AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on firmware that uses
SMM backing for select services such as variable storage. SMM may try to access physical addresses, but they get
moved by boot.efi.

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

3. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with

17

7. Scheme
Type: plist dict
Description: Define kernelspace operation mode via parameters described in Scheme Properties section below.

7.3 Add Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext architecture (Any, i386, x86_64).

2. BundlePath
Type: plist string
Failsafe: Emptystring
Description: Kext bundle path (e.g. Lilu.kext or MyKext.kext/Contents/PlugIns/MySubKext.kext).

3. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added unless set to true.

5. ExecutablePath
Type: plist string
Failsafe: Emptystring
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

6. MaxKernel
Type: plist string
Failsafe: Emptystring
Description: Adds kernel driver on specified macOS version or older.

Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version for 10.14.6. Kernel version interpretation is implemented as follows:

ParseDarwinV ersion(κ, λ, µ) = κ · 10000 Where κ ∈ (0, 99) is kernel version major
+ λ · 100 Where λ ∈ (0, 99) is kernel version minor
+ µ Where µ ∈ (0, 99) is kernel version patch

Kernel version comparison is implemented as follows:

α =
{
ParseDarwinV ersion(MinKernel), If MinKernel is valid
0 Otherwise

β =
{
ParseDarwinV ersion(MaxKernel), If MaxKernel is valid
∞ Otherwise

γ =
{
ParseDarwinV ersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
∞ Otherwise

f(α, β, γ) = α ≤ γ ≤ β

Here ParseDarwinV ersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinV ersion function looks up Darwin kernel version by
locating "Darwin Kernel Version κ.λ.µ" string in the kernel image.

7. MinKernel
Type: plist string

25

Failsafe: Emptystring
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

8. PlistPath
Type: plist string
Failsafe: Emptystring
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.4 Block Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext block architecture (Any, i386, x86_64).

2. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

4. Identifier
Type: plist string
Failsafe: Emptystring
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

5. MaxKernel
Type: plist string
Failsafe: Emptystring
Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

6. MinKernel
Type: plist string
Failsafe: Emptystring
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7.5 Emulate Properties
1. Cpuid1Data

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property primarily serves for three needs:

• Enabling support of an unsupported CPU model (e.g. Intel Pentium).
• Enabling support of a CPU model that is not yet supported by a specific version of macOS which usually is

old.
• Enabling XCPM support for an unsupported CPU variant.

Note 1 : It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

26

Note 2 : Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID.
The remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, C3 06 03 00 stands for
CPUID 0x0306C3 (Haswell).

Note 3 : For XCPM support it is recommended to use the following combinations.

• Haswell-E (0x0306F2) to Haswell (0x0306C3):
Cpuid1Data: C3 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

• Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
Cpuid1Data: D4 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4 : Note that the following configurations are unsupported by XCPM (at least out of the box):

• Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

• Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy hacks for
older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

2. Cpuid1Mask
Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in Cpuid1Data.

When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

3. DummyPowerManagement
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables AppleIntelCpuPowerManagement.

Note 1 : This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power
management driver in macOS.

Note 2 : While this option is usually needed to disable AppleIntelCpuPowerManagement on unsupported platforms,
it can also be used to disable this kext in other situations (e.g. with Cpuid1Data left blank).

4. MaxKernel
Type: plist string
Failsafe: Emptystring
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

5. MinKernel
Type: plist string
Failsafe: Emptystring
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7.6 Force Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext architecture (Any, i386, x86_64).

2. BundlePath
Type: plist string
Failsafe: Emptystring
Description: Kext bundle path (e.g. System\Library \Extensions \IONetworkingFamily.kext).

27

https://github.com/acidanthera/bugtracker/issues/365

3. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added when not present unless set to true.

5. ExecutablePath
Type: plist string
Failsafe: Emptystring
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/IONetworkingFamily).

6. Identifier
Type: plist string
Failsafe: Emptystring
Description: Kext identifier to perform presence checking before adding (e.g. com.apple.iokit.IONetworkingFamily).
Only drivers which identifiers are not be found in the cache will be added.

7. MaxKernel
Type: plist string
Failsafe: Emptystring
Description: Adds kernel driver on specified macOS version or older.

Note: Refer to Add Add MaxKernel description for matching logic.

8. MinKernel
Type: plist string
Failsafe: Emptystring
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add Add MaxKernel description for matching logic.

9. PlistPath
Type: plist string
Failsafe: Emptystring
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.7 Patch Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext patch architecture (Any, i386, x86_64).

2. Base
Type: plist string
Failsafe: Emptystring
Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to

:::
Set

::
to

:::
an

:
empty string to be ignored

:::::
ignore.

3. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Count
Type: plist integer

28

Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

5. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel patch will not be used unless set to true.

6. Find
Type: plist data
Failsafe: Empty data

::::::::::
(Immediate

::::::::::::
replacement

::
at

:::::
Base

:
)

Description: Data to find. Can be set to empty for immediate replacement at Base. Must
:::::
Must

:::
be equal to

Replace in size otherwise
::
if

:::
set.

7. Identifier
Type: plist string
Failsafe: Emptystring
Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

8. Limit
Type: plist integer
Failsafe: 0

:
0
:::::::
(Search

::::::
entire

::::
kext

:::
or

::::::
kernel)

Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

9. Mask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise

:
if

:::
set.

10. MaxKernel
Type: plist string
Failsafe: Emptystring
Description: Patches data on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

11. MinKernel
Type: plist string
Failsafe: Emptystring
Description: Patches data on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

12. Replace
Type: plist data
Failsafe: Emptydata
Description: Replacement data of one or more bytes.

13. ReplaceMask
Type: plist data
Failsafe: Empty data

:::::::::
(Ignored)

Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set
to non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise

:
if

:::
set.

14. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

29

Failsafe: false
Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

13. LapicKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)
Description: Disables kernel panic on LAPIC interrupts.

14. LegacyCommpage
Type: plist boolean
Failsafe: false
Requirement: 10.4 - 10.6
Description: Replaces the default 64-bit commpage bcopy implementation with one that does not require
SSSE3, useful for legacy platforms. This prevents a commpage no match for last panic due to no available
64-bit bcopy functions that do not require SSSE3.

15. PanicNoKextDump
Type: plist boolean
Failsafe: false
Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

16. PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.15 (not required for older)
Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

17. SetApfsTrimTimeout
Type: plist integer
Failsafe: -1
Requirement: 10.14 (not required for older)
Description: Set trim timeout in microseconds for APFS filesystems on SSDs.

APFS filesystem is designed in a way that the space controlled via spaceman structure is either used or free. This
may be different in other filesystems where the areas can be marked as used, free, and unmapped. All free space
is trimmed (unmapped/deallocated) at macOS startup. The trimming procedure for NVMe drives happens in
LBA ranges due to the nature of DSM command with up to 256 ranges per command. The more fragmented the
memory on the drive is, the more commands are necessary to trim all the free space.

Depending on the SSD controller and the drive fragmenation trim procedure may take considerable amount of
time, causing noticeable boot slowdown APFS driver explicitly ignores previously unmapped areas and trims
them on boot again and again. To workaround boot slowdown macOS driver introduced a timeout (9.999999
seconds) that stops trim operation when it did not manage to complete in time. On many controllers, such as
Samsung, where the deallocation is not very fast, the timeout is reached very quickly. Essentially it means that
macOS will try to trim all the same lower blocks that have already been deallocated, but will never have enough
time to deallocate higher blocks once the fragmentation increases. This means that trimming on these SSDs will
be broken soon after the installation, causing extra wear to the flash.

One way to workaround the problem is to increase the timeout to a very high value, which at the cost of slow
boot times (extra minutes) will ensure that all the blocks are trimmed. For this one can set this

:::
Set

:::
this

:
option

32

• j140a — MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019). Minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020). Minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020). Minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)
• x86legacy — Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)

Apple Secure Boot appeared in macOS 10.13 on models with T2 chips. Since PlatformInfo and SecureBootModel
are independent, Apple Secure Boot can be used with any SMBIOS with and without T2. Setting SecureBootModel
to any valid value but Disabled is equivalent to Medium Security of Apple Secure Boot. The ApECID value must
also be specified to achieve Full Security. Check ForceSecureBootScheme when using Apple Secure Boot on
a virtual machine.

Enabling Apple Secure Boot is more demanding to incorrect configurations, buggy macOS installations, and
unsupported setups. Things to consider:

(a) As with T2 Macs, unsigned kernel drivers and several signed kernel drivers, including NVIDIA Web Drivers,
cannot be installed.

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced kernel
drivers. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, such as macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless Apple Secure Boot is
disabled.

(d) If the platform requires certain settings, but they were not enabled, because the obvious issues did not
trigger before, boot failure might occur. Be extra careful with IgnoreInvalidFlexRatio or HashServices.

(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot
until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware as Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

(h) Installing macOS with Apple Secure Boot enabled is not possible while using HFS+ target volume. This
may include HFS+ formatted drives when no spare APFS drive is available.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If there is “OCB: Apple Secure Boot prohibits this boot entry, en-
forcing!” message, it is likely the case. When this happens, either reinstall the operating system or copy
the manifests (files with .im4m extension, such as boot.efi.j137.im4m) from /usr/standalone/i386 to
/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is the system volume identifier. On
HFS+ installations the manifests should be copied to /System/Library/CoreServices on the system volume.

For more details on how to configure Apple Secure Boot with UEFI Secure Boot refer to UEFI Secure Boot
section.

8.6 Entry Properties
1. Arguments

Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Auxiliary
Type: plist boolean
Failsafe: false
Description: This entry will not be listed by default when HideAuxiliary is set to true.

49

https://support.apple.com/en-us/HT208330

3. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This entry will not be listed unless set to true.

5. Name
Type: plist string
Failsafe: Emptystring
Description: Human readable entry name displayed in boot picker.

6. Path
Type: plist string
Failsafe: Emptystring
Description: Entry location depending on entry type.

• Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot(0x0)/Pci(0x1,0x1)/.../\EFI\COOL.EFI

• Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to OC/Tools directory. Example: OpenShell.efi.

7. RealPath
Type: plist boolean
Failsafe: false
Description: Pass full path to the tool when launching.

Passing tool directory may be unsafe for tool accidentally trying to access files without checking their integrity
and thus should generally be disabled. Reason to enable this property may include cases where tools cannot work
without external files or may need them for better function (e.g. memtest86 for logging and configuration or
Shell for automatic script execution).

Note: This property is only valid for Tools. For Entries this property cannot be specified and is always true.

8. TextMode
Type: plist boolean
Failsafe: false
Description: Run the entry in text mode instead of graphics mode.

This setting may be benefitial to some older tools that require text output. By default all the tools are launched
in graphics mode. Read more about text modes in Output Properties section below.

50

10 PlatformInfo
Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a set of
interfaces based on a database in YAML format. These fields are written to three select destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than
one field and/or destination, so there are two ways to control their update process: manual, where all the values are
specified (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for
system configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from Acidanthera/dmidecode.

10.1 Properties
1. Automatic

Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

• When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
• When disabled Generic section is unused.

Warning: It is strongly discouraged set this option to false when intending to update platform information.
The only reason to do that is when doing minor correction of the SMBIOS present and similar. In all other cases
not using Automatic may lead to hard to debug errors.

2. CustomMemory
Type: plist boolean
Failsafe: false
Description: Use custom memory configuration defined in the Memory section. This completely replaces any
existing memory configuration in SMBIOS, and is only active when UpdateSMBIOS is set to true.

3. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

::::
Note

:
:
::::
The

::::::::::::::
implementation

::
of

::::
the

:::::
Data

::::
Hub

::::::::
protocol

::
in

::::
EFI

::::::::
firmware

:::
on

::::::::::
essentially

::
all

::::::::
systems,

:::::::::
including

::::::
Apple

:::::::::
hardware,

::::::
means

:::::
that

:::::::
existing

::::::
Data

::::
Hub

:::::::
entries

:::::::
cannot

:::
be

:::::::::::
overridden,

:::::
while

:::::
new

::::::
entries

::::
are

::::::
added

:::
to

::::
the

:::
end

:::::
with

:::::::
macOS

::::::::
ignoring

::::::
them.

:::::
You

::::
can

:::::
work

:::::::
around

::::
this

:::
by

::::::::::
reinstalling

::::
the

:::::
Data

:::::
Hub

::::::::
protocol

:::::
using

::::
the

::::::::::::::::::
ProtocolOverrides

::::::
section.

::::::
Refer

::
to

::::
the

::::::::
DataHub

:::::::
protocol

::::::::
override

::::::::::
description

:::
for

:::::::
details.

:

4. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

56

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

Failsafe: 0 (Automatic)
Description: Refer to SMBIOS ProcessorType.

6. SystemProductName
Type: plist string
Failsafe:

::::::
Empty

:
(OEM specified or not installed

:
)

Description: Refer to SMBIOS SystemProductName.

7. SystemSerialNumber
Type: plist string
Failsafe:

::::::
Empty

:
(OEM specified or not installed

:
)

Description: Refer to SMBIOS SystemSerialNumber.

8. SystemUUID
Type: plist string, GUID
Failsafe:

::::::
Empty

:
(OEM specified or not installed

:
)

Description: Refer to SMBIOS SystemUUID.

9. MLB
Type: plist string
Failsafe:

::::::
Empty

:
(OEM specified or not installed

:
)

Description: Refer to SMBIOS BoardSerialNumber.

10. ROM
Type: plist data, 6 bytes
Failsafe:

::::::
Empty

:
(OEM specified or not installed

:
)

Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

10.3 DataHub Properties
1. PlatformName

Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

3. SystemSerialNumber
Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID
(with swapped byte order).

5. BoardProduct
Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0

59

Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

• 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)
• 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)
• 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)
• 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)
• 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)
• 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)
• 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)
• 0xffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)
• 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)
• 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
• 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
• 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)
• 0x00100000 — Global reset ME Watchdog Timer event (Same as PRSTS bit 6)
• 0x00200000 — Global reset PowerManagement Watchdog Timer event (Same as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

9. FSBFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets FSBFrequency in gEfiProcessorSubClassGuid.

Sets CPU FSB frequency. This value equals to CPU nominal frequency divided by CPU maximum bus ratio and
is specified in Hz. Refer to MSR_NEHALEM_PLATFORM_INFO (CEh) MSR value to determine maximum bus ratio on
modern Intel CPUs.

Note: This value is not used on Skylake and newer but is still provided to follow suit.

10. ARTFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to the
Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for client Intel segment, 25
MHz for server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz
by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special
EMI-reduction circuit as described in Acidanthera Bugtracker.

11. DevicePathsSupported
Type: plist integer, 32-bit
Failsafe: Not installed

:
0
:::::
(Not

:::::::::
installed)

Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Macs.

12. SmcRevision
Type: plist data, 6 bytes
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

60

https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166

Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

13. SmcBranch
Type: plist data, 8 bytes
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

14. SmcPlatform
Type: plist data, 8 bytes
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Sets RPlt in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RPlt key.

10.4 Memory Properties
1. DataWidth

Type: plist integer, 16-bit
Failsafe: 0xFFFF (unknown)
SMBIOS: Memory Device (Type 17) — Data Width
Description: Specifies the data width, in bits, of the memory. A DataWidth of 0 and a TotalWidth of 8
indicates that the device is being used solely to provide 8 error-correction bits.

2. Devices
Type: plist array
Failsafe: Empty
Description: Specifies the custom memory devices to be added.

Designed to be filled with plist dictionary values, describing each memory device. See Memory Devices
Properties section below. This should include all memory slots, even if unpopulated.

3. ErrorCorrection
Type: plist integer, 8-bit
Failsafe: 0x03
SMBIOS: Physical Memory Array (Type 16) — Memory Error Correction
Description: Specifies the primary hardware error correction or detection method supported by the memory.

• 0x01 — Other
• 0x02 — Unknown
• 0x03 — None
• 0x04 — Parity
• 0x05 — Single-bit ECC
• 0x06 — Multi-bit ECC
• 0x07 — CRC

4. FormFactor
Type: plist integer, 8-bit
Failsafe: 0x02
SMBIOS: Memory Device (Type 17) — Form Factor
Description: Specifies the form factor of the memory. On Macs this should usually be DIMM or SODIMM.
Commonly used form factors are listed below.

When CustomMemory is false, this value is automatically set based on Mac product name.

• 0x01 — Other
• 0x02 — Unknown
• 0x09 — DIMM
• 0x0D — SODIMM
• 0x0F — FB-DIMM

5. MaxCapacity
Type: plist integer, 64-bit

61

SMBIOS: Memory Device (Type 17) — Device Locator
Description: Specifies the physically-labeled socket or board position where the memory device is located.

4. Manufacturer
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Manufacturer
Description: Specifies the manufacturer of this memory device.

5. PartNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Part Number
Description: Specifies the part number of this memory device.

6. SerialNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Serial Number
Description: Specifies the serial number of this memory device.

7. Size
Type: plist integer, 32-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Size
Description: Specifies the size of the memory device, in megabytes. 0 indicates this slot is not populated.

8. Speed
Type: plist integer, 16-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Speed
Description: Specifies the maximum capable speed of the device, in megatransfers per second (MT/s). 0
indicates an unknown speed.

10.5 PlatformNVRAM Properties
1. BID

Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID.

2. ROM
Type: plist data, 6 bytes
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

3. MLB
Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB.

4. FirmwareFeatures
Type: plist data, 8 bytes
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: This variable comes in pair with FirmwareFeaturesMask. Specifies the values of NVRAM variables:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures

5. FirmwareFeaturesMask
Type: plist data, 8 bytes

63

Failsafe: Not installed
::::::
Empty

:::::
(Not

:::::::::
installed)

Description: This variable comes in pair with FirmwareFeatures. Specifies the values of NVRAM variables:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

6. SystemUUID
Type: plist string
Failsafe: Not installed

::::::
Empty

:::::
(Not

:::::::::
installed)

Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:system-id
for boot services only. Value found on Macs is equal to SMBIOS SystemUUID.

10.6 SMBIOS Properties
1. BIOSVendor

Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: BIOS Information (Type 0) — Vendor
Description: BIOS Vendor. All rules of SystemManufacturer do apply.

2. BIOSVersion
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: BIOS Information (Type 0) — BIOS Version
Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmware and
is described in BiosId.h. In newer firmware, it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with
T2.

Apple ROM Version
BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151
EFI Version: 220.230.16.0.0
Built by: root@quinoa
Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)
ROM Version: F000_B00
Build Type: Official Build, RELEASE
Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)
UUID: E5D1475B-29FF-32BA-8552-682622BA42E1
UUID: 151B0907-10F9-3271-87CD-4BF5DBECACF5

3. BIOSReleaseDate
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: BIOS Information (Type 0) — BIOS Release Date
Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

4. SystemManufacturer
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — Manufacturer
Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins. In addition
it will also make some operating systems such as Linux unbootable.

5. SystemProductName
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

64

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Guid/BiosId.h

SMBIOS: System Information (Type 1), Product Name
Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in AppleModels.

6. SystemVersion
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — Version
Description: Product iteration version number. May look like 1.1.

7. SystemSerialNumber
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — Serial Number
Description: Product serial number in defined format. Known formats are described in macserial.

8. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — UUID
Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

9. SystemSKUNumber
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — SKU Number
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

10. SystemFamily
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

11. BoardManufacturer
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) - Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

12. BoardProduct
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) - Product
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models.

13. BoardVersion
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) - Version
Description: Board version number. Varies, may match SystemProductName or SystemProductVersion.

14. BoardSerialNumber
Type: plist string

65

https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macserial/FORMAT.md

Failsafe: OEM specified
::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Serial Number
Description: Board serial number in defined format. Known formats are described in macserial.

15. BoardAssetTag
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Asset Tag
Description: Asset tag number. Varies, may be empty or Type2 - Board Asset Tag.

16. BoardType
Type: plist integer
Failsafe: OEM specified

:
0

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Board Type
Description: Either 0xA (Motherboard (includes processor, memory, and I/O) or 0xB (Processor/Memory
Module), refer to Table 15 – Baseboard: Board Type for more details.

17. BoardLocationInChassis
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: Baseboard (or Module) Information (Type 2) — Location in Chassis
Description: Varies, may be empty or Part Component.

18. ChassisManufacturer
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

19. ChassisType
Type: plist integer
Failsafe: OEM specified

:
0

::::::
(OEM

:::::::::
specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Type
Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

20. ChassisVersion
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

21. ChassisSerialNumber
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

22. ChassisAssetTag
Type: plist string
Failsafe: OEM specified

::::::
Empty

::::::
(OEM

:::::::::
specified)

SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature
Type: plist integer, 32-bit
Failsafe: 0xFFFFFFFF
SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature
Description: Platform features bitmask. Refer to AppleFeatures.h for more details. Use 0xFFFFFFFF value to
not provide this table.

24. SmcVersion
Type: plist data, 16 bytes

66

https://github.com/acidanthera/macserial/blob/master/FORMAT.md
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h

• 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

• -1 — permit any version to load (strongly discouraged).
• Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS

versions can be found in OpenCore boot log and OcApfsLib.

11.8 Audio Properties
1. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
IOHDACodecAddress field.

2. AudioDevice
Type: plist string
Failsafe: empty string

::::::
Empty

Description: Device path of the specified audio controller for audio support.

Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result in
the first available audio controller to be used.

3. AudioOut
Type: plist integer
Failsafe: 0
Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

4. AudioSupport
Type: plist boolean
Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume
Type: plist integer
Failsafe: 0
Description: Minimal heard volume level from 0 to 100.

74

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

4. KeySupport
Type: plist boolean
Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka (AptioInputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as
OpenUsbKbDxe, this option should never be enabled.

5. KeySupportMode
Type: plist string
Failsafe: Auto
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

• Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
• V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
• V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
• AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

6. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

7. PointerSupport
Type: plist boolean
Failsafe: false
Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through select OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is broken.

8. PointerSupportMode
Type: plist string
Failsafe: empty string

::::::
Empty

Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116. The value of this property cannot be empty if
PointerSupport is enabled.

76

https://github.com/LongSoft/UEFITool/pull/116

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmware generally supports ConsoleControl with two rendering modes: Graphics and Text. Some types
of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

• BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
• BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.
• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for
some very old and buggy laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

2. ConsoleMode
Type: plist string
Failsafe: Emptystring
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change
::
an

::::::
empty

::::::
string

::
to

:::::::::
maintain

::::::
current

:
console mode. Set to Max to try to use

:::::::
attempt

:::::
using

::::
the largest available console mode. Currently

::::
This

::::::
option

::
is
:::::::::
currently

:::::::
ignored

::
as

::::
the Builtin text

renderer supports only
::::
only

::::::::
supports

:
one console mode, so this option is ignored.

Note: This field is best left empty on most types of firmware.

3. Resolution
Type: plist string
Failsafe: Emptystring
Description: Sets console output screen resolution.

77

• Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

• Set to empty string not to change
::
an

:::::::
empty

:::::
string

:::
to

::::::::
maintain

:::
the

:::::::
current

:
screen resolution.

• Set to Max to try to use
:::::::
attempt

::::::
using

:::
the

:
largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

4. ForceResolution
Type: plist boolean
Failsafe: false
Description: Forces Resolution to be set in cases where the desired resolution is not available by default, such
as on legacy Intel GMA and first generation Intel HD Graphics (Ironlake/Arrandale). Setting Resolution to Max
will try to pull the largest available resolution from the connected display’s EDID.

Note: This option depends on the OC_FORCE_RESOLUTION_PROTOCOL protocol being present. This protocol is
currently only supported by OpenDuetPkg. The OpenDuetPkg implementation currently only supports Intel
iGPUs.

5. ClearScreenOnModeSwitch
Type: plist boolean
Failsafe: false
Description: Some types of firmware only clear part of the screen when switching from graphics to text mode,
leaving a fragment of previously drawn images visible. This option fills the entire graphics screen with black
colour before switching to text mode.

Note: This option only applies to System renderer.

6. DirectGopRendering
Type: plist boolean
Failsafe: false
Description: Use builtin graphics output protocol renderer for console.

On some types of firmware, such as on the MacPro5,1, this may provide better performance or fix rendering
issues. However, this option is not recommended unless there is an obvious benefit as it may result in issues such
as slower scrolling.

7. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Some types of firmware output text onscreen in both graphics and text mode. This is typically
unexpected as random text may appear over graphical images and cause UI corruption. Setting this option to
true will discard all text output when console control is in a different mode from Text.

Note: This option only applies to the System renderer.

8. ReplaceTabWithSpace
Type: plist boolean
Failsafe: false
Description: Some types of firmware do not print tab characters or everything that follows them, causing
difficulties in using the UEFI Shell’s builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: This option only applies to System renderer.

9. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: Ensure GOP (Graphics Output Protocol) on console handle.

78

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcForceResolution.h

macOS bootloader requires GOP or UGA (for 10.4 EfiBoot) to be present on console handle, yet the exact
location of the graphics protocol is not covered by the UEFI specification. This option will ensure GOP and
UGA, if present, are available on the console handle.

Note: This option will also replace broken GOP protocol on console handle, which may be the case on MacPro5,1
with newer GPUs.

10. ReconnectOnResChange
Type: plist boolean
Failsafe: false
Description: Reconnect console controllers after changing screen resolution.

On some types of firmware, the controllers that produce the console protocols (simple text out) must be reconnected
when the screen resolution is changed via GOP. Otherwise they will not produce text based on the new resolution.

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it is
optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this unless
required.

11. SanitiseClearScreen
Type: plist boolean
Failsafe: false
Description: Some types of firmware reset screen resolutions to a failsafe value (such as 1024x768) on the
attempts to clear screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a
workaround.

Note: This option only applies to System renderer. On all known affected systems ConsoleMode had to be set to
::
an

:
empty string for this to work.

12. UgaPassThrough
Type: plist boolean
Failsafe: false
Description: Provide UGA protocol instances on top of GOP protocol.

Some types of firmware do not implement the legacy UGA protocol but this may be required for screen output by
older EFI applications such as EfiBoot from 10.4.

11.11 ProtocolOverrides Properties
1. AppleAudio

Type: plist boolean
Failsafe: false
Description: Reinstalls Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or
audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific to
Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions
use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

2. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

Note: Some Macs, namely MacPro5,1, do have APFS compatibility, but their Apple Boot Policy protocol contains
recovery detection issues, thus using this option is advised on them as well.

79

3. AppleDebugLog
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Debug Log protocol with a builtin version.

4. AppleEvent
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

5. AppleFramebufferInfo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs or legacy Macs to improve compatibility with legacy EfiBoot such as the one in
macOS 10.4.

6. AppleImageConversion
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Image Conversion protocol with a builtin version.

7. AppleImg4Verification
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple IMG4 Verification protocol with a builtin version. This protocol is used to verify
im4m manifest files used by Apple Secure Boot.

8. AppleKeyMap
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Key Map protocols with builtin versions.

9. AppleRtcRam
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple RTC RAM protocol with builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to select RTC memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as
a data array.

10. AppleSecureBoot
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Secure Boot protocol with a builtin version.

11. AppleSmcIo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple SMC I/O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

13. DataHub
Type: plist boolean

80

Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will delete all previous properties

::::
Note

:
:
:::::
This

:::
will

:::::::
discard

:::
all

::::::::
previous

:::::::
entries

:
if the protocol was already installed

:
,
::
so

:::
all

::::::::::
properties

::::::::
required

:::
for

:::
safe

:::::::::
operation

:::
of

:::
the

:::::::
system

:::::
must

::
be

::::::::
specified

:::
in

::::
your

::::::::::::
configuration.

14. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

::::
Note

:
:
:::::
This

::::
will

:::::::
discard

:::
all

::::::::
previous

::::::
entries

::
if
::::
the

::::::::
protocol

::::
was

:::::::
already

::::::::
installed,

:::
so

:::
all

::::::::::
properties

:::::::
required

::::
for

:::
safe

:::::::::
operation

:::
of

:::
the

:::::::
system

:::::
must

::
be

::::::::
specified

:::
in

::::
your

:::::::::::::
configuration.

:

15. FirmwareVolume
Type: plist boolean
Failsafe: false
Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

16. HashServices
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to .

::::::::::
Platforms

::::::
earlier

:::::
than APTIO V (Haswell and older) are

::::::::
generally

:
affected.

17. OSInfo
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware

:
, or by other applications,

:::
to

::::::
receive

:::::::::::
notifications

:::::
from

::::
the

::::::
macOS

::::::::::
bootloader.

18. UnicodeCollation
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties
1. DisableSecurityPolicy

Type: plist boolean
Failsafe: false
Description: Disable platform security policy.

Note: This setting disables various security features of the firmware, defeating the purpose of any kind of Secure
Boot. Do NOT enable if you use UEFI Secure Boot.

2. ExitBootServicesDelay
Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very rough workaround to circumvent the Still waiting for root device message on some APTIO
IV firmware (ASUS Z87-Pro) particularly when using FileVault 2. It appears that for some reason, they execute

81

11.13 ReservedMemory Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Start address of the reserved memory region, which should be allocated as reserved effectively
marking the memory of this type inaccessible to the operating system.

The addresses written here must be part of the memory map, have EfiConventionalMemory type, and page-aligned
(4 KBs).

Note: Some types of firmware may not allocate memory areas used by S3 (sleep) and S4 (hibernation) code unless
CSM is enabled causing wake failures. After comparing the memory maps with CSM disabled and enabled, these
areas can be found in the lower memory and can be fixed up by doing the reservation. See Sample.plist for
more details.

2. Comment
Type: plist string
Failsafe: Emptystring
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Size
Type: plist integer
Failsafe: 0
Description: Size of the reserved memory region, must be page-aligned (4 KBs).

4. Type
Type: plist string
Failsafe: Reserved
Description: Memory region type matching the UEFI specification memory descriptor types. Mapping:

• Reserved — EfiReservedMemoryType
• LoaderCode — EfiLoaderCode
• LoaderData — EfiLoaderData
• BootServiceCode — EfiBootServicesCode
• BootServiceData — EfiBootServicesData
• RuntimeCode — EfiRuntimeServicesCode
• RuntimeData — EfiRuntimeServicesData
• Available — EfiConventionalMemory
• Persistent — EfiPersistentMemory
• UnusableMemory — EfiUnusableMemory
• ACPIReclaimMemory — EfiACPIReclaimMemory
• ACPIMemoryNVS — EfiACPIMemoryNVS
• MemoryMappedIO — EfiMemoryMappedIO
• MemoryMappedIOPortSpace — EfiMemoryMappedIOPortSpace
• PalCode — EfiPalCode

5. Enabled
Type: plist boolean
Failsafe: false
Description: This region will not be reserved unless set to true.

83

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an
older operating system, there are many other less obvious things to consider. This section tries to cover a common set
of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation
media for every minor release, so to get a compatible distribution one may have to .

::::
For

:::::::::::
compatible

:::::::::::
distributions

:::
of

::::
such,

:
download a device-specific image and mod

::::::
modify

:
it if necessary. To get the

::::
Visit

::::
this

::::::::
archived

::::::
Apple

::::::::
Support

article
:::
for

:
a
:
list of the bundled device-specific builds for legacy operating systemsone can visit this archived Apple

Support . Since it is not always
:
.
:::::::::
However,

::
as

::::
this

::::
may

::::
not

::::::
always

:::
be

:
accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use Apple Partitioning Scheme and require OpenPartitionDxe driver to run DMG
recovery and installation (included in OpenDuet). It is possible to set DmgLoading to Disabled to run the
recovery without DMG loading avoiding the need for OpenPartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

• SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

• Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

• All previous issues apply.

• SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here (MEGA Mirror), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note
that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW

84

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://archive.org/details/10.6.7-10j3250-disk-images
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

	ACPI
	Introduction
	Properties
	Add Properties
	Delete Properties
	Patch Properties

	MmioWhitelist Properties
	Patch Properties
	Quirks Properties
	Add Properties
	Block Properties
	Emulate Properties
	Force Properties
	Patch Properties
	Entry Properties
	PlatformInfo
	Properties
	DataHub Properties
	Memory Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	Audio Properties
	Output Properties
	ProtocolOverrides Properties
	Quirks Properties
	ReservedMemory Properties
	Troubleshooting
	Legacy Apple OS

