
OpenCore

Reference Manual (0.6.5
:::
.6)

[2021.01.19]

Copyright ©2018-2021 vit9696

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

• Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

• Use line length of 120 characters or less, preferably 100 characters.
• Use spaces after casts, e.g. (VOID *)(UINTN) Variable.
• Use

:::
two

::::::
spaces

:::
as

:::::::::::
indentations

::
as

:::::::
always.

:

•
:::
Use

:
SPDX license headers as shown in acidanthera/bugtracker#483.

3.5 Debugging
The codebase incorporates EDK II debugging and few custom features to improve the experience.

• Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use OC:, for
libraries and drivers use their own unique prefixes.

• Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

• Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

• Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

• Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

• Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

• Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on git-bisect functionality. There also are some
unofficial resources that provide per-commit binary builds of OpenCore, such as Dortania.

9

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

6. SerialInit
Type: plist boolean
Failsafe: false
Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID. Default
values as found in MdeModulePkg.dec are as follows:

• PcdSerialBaudRate — Baud rate: 115200.
• PcdSerialLineControl — Line control: no parity, 8 data bits, 1 stop bit.

See more details in Debugging section.

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPIand SMBIOSdumps. ,

:::::::::
SMBIOS,

::::
and

::::::
audio

::::::
codec

:::::::
dumps.

::::::
Audio

::::::
codec

::::::
dumps

:::::::
require

:::
an

::::::
audio

:::::::
backend

::::::
driver

::
to

:::
be

:::::::
loaded.

:

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if this option
is needed.

8. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

• 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
• 0x02 (bit 1) — Enable basic console (onscreen) logging.
• 0x04 (bit 2) — Enable logging to Data Hub.
• 0x08 (bit 3) — Enable serial port logging.
• 0x10 (bit 4) — Enable UEFI variable logging.
• 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
• 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some types of firmware may truncate it much earlier or drop completely if they have no
memory. Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFI
variable log use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Warning: Some types of firmware appear to have flawed NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

41

Warning: This feature is very dangerous as it passes unprotected data to firmware variable services. Use it only
when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

* value can be used to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value enabled on most types of firmware but it is left configurable for
firmware that may have issues with NVRAM variable storage garbage collection or similar.

To read NVRAM variable value from macOS, nvram could be used by concatenating GUID and name variables separated
by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Using
PlatformInfo is the recommend

::::::::::::
recommended

:
way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables.

:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables.

:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

51

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3.
:::::::::::::::
MaxBIOSVersion
:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

::::
Sets

::::::::::::
BIOSVersion

::
to

:::::::::::::::::::::
9999.999.999.999.999

:
,
::::::::::::
recommended

:::
for

::::::
legacy

:::::
Macs

:::::
when

:::::
using

::::::::::
Automatic

:::::::::::
PlatformInfo

:::
to

:::::
avoid

:::::
BIOS

::::::::
updates

::
in

::::::::::
unofficially

::::::::::
supported

:::::::
macOS

::::::::
versions.

:

4. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in About This Mac.

Valid values:

• Auto — use the original PlatformFeature value.
• Upgradable — explicitly unset PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.
• Soldered — explicitly set PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.

Note: On certain Mac models (namely MacBookPro10,x and any MacBookAir), SPMemoryReporter.spreporter
will ignore PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY and assume that system memory is non-upgradable.

5. ProcessorType
Type: plist integer
Failsafe: 0 (Automatic)
Description: Refer to SMBIOS ProcessorType.

6. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

7. SystemSerialNumber
Type: plist string
Failsafe: OPENCORE_SN1
Description: Refer to SMBIOS SystemSerialNumber.

8. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified
Description: Refer to SMBIOS SystemUUID.

9. MLB
Type: plist string
Failsafe: OPENCORE_MLB_SN11
Description: Refer to SMBIOS BoardSerialNumber.

10. ROM
Type: plist data, 6 bytes
Failsafe: all zero
Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

10.3 DataHub Properties
1. PlatformName

Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed

57

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

11.2 Drivers
Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead the
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

66

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

11.3 Tools and Applications
Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore, see more details in the Tools subsection of the configuration, most should
be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1 : /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2 : To be able to use bless disabling System Integrity Protection is necessary.
Note 3 : To be able to boot Secure Boot might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).
ChipTune* Test BeepGen protocol and generate audio signals of different style and length.
CleanNvram* Reset NVRAM alternative bundled as a standalone tool.
GopStop* Test GraphicsOutput protocol with a simple scenario.
HdaCodecDump* Parse and dump High Definition Audio codec information (requires AudioDxe).
KeyTester* Test keyboard input in SimpleText mode.
MemTest86 Memory testing utility.
OpenControl* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM

access when launching from OpenCore.
OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmware.
PavpProvision Perform EPID provisioning (requires certificate data configuration).
ResetSystem* Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,

Shutdown, WarmReset. Defaults to ColdReset.
RtcRw* Utility to read and write RTC (CMOS) memory.
VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy
OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. OldExtHardDrive.icns).

::::
Note

:
:
::
In

::::
the

::::::::
following

:::
all

:::::::::::
dimensions

:::
are

::::::::::
normative

:::
for

:::
the

:::
1x

:::::::
scaling

::::
level

::::
and

:::::
shall

:::
be

::::::
scaled

::::::::::
accordingly

:::
for

::::::
other

:::::
levels.

:

• Cursor — Mouse cursor (mandatory
:
,
:::
up

::
to

::::::::
144x144).

• Selected — Selected item (mandatory
:
,
::::::::
144x144).

68

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

• Selector — Selecting item (mandatory
:
,
::
up

:::
to

:::::::
144x40).

•
::::
Left

::
—

::::::::
Scrolling

::::
left

:::::::::::
(mandatory,

:::::::
40x40).

:

•
:::::
Right

::
—

::::::::
Scrolling

:::::
right

:::::::::::
(mandatory,

:::::::
40x40).

:

• HardDrive — Generic OS (mandatory,
::::::::
128x128).

•
:::::::::::
Background

::
—

::::::::
Centred

:::::::::::
background

::::::
image.

:

• Apple — Apple OS
::::::::
(128x128).

• AppleRecv — Apple Recovery OS
::::::::
(128x128).

• AppleTM — Apple Time Machine
::::::::
(128x128).

• Windows — Windows
:::::::::
(128x128).

• Other — Custom entry (see Entries,
::::::::
128x128).

• ResetNVRAM — Reset NVRAM system action or tool
:::::::::
(128x128).

• Shell — Entry with UEFI Shell name (
:::
for e.g. OpenShell

::::::::
(128x128).

• Tool — Any other tool
:::::::::
(128x128).

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .lbl or .l2x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

• EFIBoot — Generic OS.
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

::::
Note

:
:
:::
All

::::::
labels

:::::
must

::::
have

::
a
::::::
height

::
of

:::::::
exactly

:::
12

:::
px.

::::::
There

::
is
:::
no

:::::
limit

:::
for

:::::
their

::::::
width.

:

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime
OpenRuntime is an OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties
1. APFS

Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in APFS Properties section below.

2. Audio
Type: plist dict

69

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116.

::::
The

:::::
value

::
of

::::
this

::::::::
property

:::::::
cannot

:::
be

::::::
empty

::
if

:::::::::::::::
PointerSupport

::
is

::::::::
enabled.

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmware generally supports ConsoleControl with two rendering modes: Graphics and Text. Some types
of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

• BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
• BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.
• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for
some very old and buggy laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

2. ConsoleMode
Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best left empty on most types of firmware.

75

https://github.com/LongSoft/UEFITool/pull/116

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an
older operating system, there are many other less obvious things to consider. This section tries to cover a common set
of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation
media for every minor release, so to get a compatible distribution one may have to download a device-specific image
and mod it if necessary. To get the list of the bundled device-specific builds for legacy operating systems one can visit
this archived Apple Support article. Since it is not always accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use Apple Partitioning Scheme and will require the proprietary PartitionDxe
driver to run DMG recovery and installation. It is possible to set DmgLoading to Disabled to run the recovery
without DMG loading avoiding the need for PartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

• SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

• Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

• All previous issues apply.

• SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here (MEGA Mirror

:
), assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note

that these are the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg

82

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://archive.org/details/10.6.7-10j3250-disk-images
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp OSInstall.mpkg RW/System/Installation/Packages/OSInstall.mpkg
killall Finder fseventsd
rm -rf RW/.fseventsd
cp DS_STORE RW/.DS_Store
hdiutil detach RW -force
rm -rf DS_STORE RW
hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg

12.1.4 macOS 10.5

• All previous issues apply.

• This macOS version does not support x86_64 kernel and requires i386 kernel extensions and patches.

• This macOS version uses the first (V1) version of prelinkedkernel, which has kext symbol tables corrupted
by the kext tools. This nuance renders prelinkedkernel kext injection impossible in OpenCore. Mkext kext
injection will still work without noticeable performance drain and will be chosen automatically when KernelCache
is set to Auto.

• Last released installer image for macOS 10.5 is macOS 10.5.7 build 9J3050 (for MacBookPro5,3). Unlike the
others, this image is not limited to the target model identifiers and can be used as is. The original 9J3050 image
can be found here

:
(MEGA Mirror

:
), assuming macOS 10.5 is legally owned. Read DIGEST.txt for more details.

Note that this is the earliest tested version of macOS 10.5 with OpenCore.

12.1.5 macOS 10.4

• All previous issues apply.

• This macOS version has a hard requirement to access all the optional packages on the second DVD disk installation
media, requiring either two disks or USB media installation.

• Last released installer images for macOS 10.4 are macOS 10.4.10 builds 8R4061a (for MacBookPro3,1) and 8R4088
(for iMac7,1)). These images are limited to their target model identifiers as on newer macOS versions. Modified
8R4088 images (with ACDT suffix) without model restrictions can be found here

:
(MEGA Mirror

:
), assuming

macOS 10.4 is legally owned. Read DIGEST.txt for more details. Note that these are the earliest tested versions
of macOS 10.4 with OpenCore.

12.2 UEFI Secure Boot
OpenCore is designed to provide a secure boot chain between firmware and operating system. On most x86 platforms
trusted loading is implemented via UEFI Secure Boot model. Not only OpenCore fully supports this model, but it
also extends its capabilities to ensure sealed configuration via vaulting and provide trusted loading to the operating
systems using custom verification, such as Apple Secure Boot. Proper secure boot chain requires several steps and
careful configuration of select settings as explained below:

1. Enable Apple Secure Boot by setting SecureBootModel to run macOS. Note, that not every macOS is compatible
with Apple Secure Boot and there are several other restrictions as explained in Apple Secure Boot section.

2. Disable DMG loading by setting DmgLoading to Disabled if users have concerns of loading old vulnerable DMG
recoveries. This is not required, but recommended. For the actual tradeoffs see the details in DMG loading
section.

3. Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in APFS JumpStart section. An alternative is to install apfs.efi
driver manually.

4. Make sure that Force driver loading is not needed and all the operating systems are still bootable.

5. Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

83

https://archive.org/details/10.5.7-9-j-3050
https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg
https://archive.org/details/10.4.10-8-r-4088-acdt
https://mega.nz/folder/D3ASzLzA#7sjYXE2X09f6aGjol_C7dg
https://en.wikipedia.org/wiki/UEFI_Secure_Boot

	Debugging
	Mandatory Variables
	Recommended Variables
	DataHub Properties
	UEFI
	Introduction
	Drivers
	Tools and Applications
	OpenCanopy
	OpenRuntime
	Properties
	Output Properties

	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot

