
OpenCore

Reference Manual (0.6.5)

[2021.01.02]

Copyright ©2018-2021 vit9696

Contents

1 Introduction 3
1.1 Generic Terms . 3

2 Configuration 4
2.1 Configuration Terms . 4
2.2 Configuration Processing . 4
2.3 Configuration Structure . 5

3 Setup 6
3.1 Directory Structure . 6
3.2 Installation and Upgrade . 7
3.3 Contribution . 8
3.4 Coding conventions . 9
3.5 Debugging . 10

4 ACPI 11
4.1 Introduction . 11
4.2 Properties . 11
4.3 Add Properties . 12
4.4 Delete Properties . 12
4.5 Patch Properties . 13
4.6 Quirks Properties . 14

5 Booter 16
5.1 Introduction . 16
5.2 Properties . 16
5.3 MmioWhitelist Properties . 17
5.4 Patch Properties . 17
5.5 Quirks Properties . 18

6 DeviceProperties 23
6.1 Introduction . 23
6.2 Properties . 23
6.3 Common Properties . 23

7 Kernel 25
7.1 Introduction . 25
7.2 Properties . 25
7.3 Add Properties . 26
7.4 Block Properties . 27
7.5 Emulate Properties . 27
7.6 Force Properties . 28
7.7 Patch Properties . 29
7.8 Quirks Properties . 30
7.9 Scheme Properties . 33

8 Misc 36
8.1 Introduction . 36
8.2 Properties . 37
8.3 Boot Properties . 37
8.4 Debug Properties . 41
8.5 Security Properties . 43
8.6 Entry Properties . 49

9 NVRAM 51
9.1 Introduction . 51

1

9.2 Properties . 51
9.3 Mandatory Variables . 52
9.4 Recommended Variables . 52
9.5 Other Variables . 53

10 PlatformInfo 56
10.1 Properties . 56
10.2 Generic Properties . 57
10.3 DataHub Properties . 58
10.4 Memory Properties . 60
10.5 PlatformNVRAM Properties . 62
10.6 SMBIOS Properties . 63

11 UEFI 67
11.1 Introduction . 67
11.2 Drivers . 67
11.3 Tools and Applications . 69
11.4 OpenCanopy . 69
11.5 OpenRuntime . 70
11.6 Properties . 70
11.7 APFS Properties . 72
11.8 Audio Properties . 73
11.9 Input Properties . 74
11.10 Output Properties . 76
11.11 ProtocolOverrides Properties . 78
11.12 Quirks Properties . 80
11.13 ReservedMemory Properties . 81

12 Troubleshooting 83
12.1 Legacy Apple OS . 83
12.2 UEFI Secure Boot . 84
12.3 Windows support . 85
12.4 Debugging . 86
12.5 Tips and Tricks . 87

2

1 Introduction
This document provides information on OpenCore user configuration file format used to set up the correct functioning
of the macOS operating system. It is to be read as the official clarification of expected OpenCore behaviour. All
deviations, if found in published OpenCore releases, shall be considered to be documentation or implementation bugs
which should be reported via the Acidanthera Bugtracker. An errata sheet is available in OpenCorePkg repository.

This document is structured as a specification and is not meant to provide a step-by-step guide to configuring an
end-user Board Support Package (BSP). The intended audience of the document is anticipated to be programmers and
engineers with a basic understanding of macOS internals and UEFI functionality. For these reasons, this document is
available exclusively in English, and all other sources or translations of this document are unofficial and may contain
errors.

Third-party articles, utilities, books, and similar, may be more useful for a wider audience as they could provide
guide-like material. However, they are subject to their authors’ preferences, tastes, misinterpretations of this document,
and unavoidable obsolescence. In cases of using such sources, such as Dortania’s OpenCore Install Guide and related
material, please refer back to this document on every decision made and re-evaluate potential consequences.

Please note that regardless of the sources used, users are required to fully understand every OpenCore configuration
option, and the principles behind them, before posting issues to the Acidanthera Bugtracker.

Note: Creating this document would not have been possible without the invaluable contributions from other people:
Andrey1970, Goldfish64, dakanji, PMheart, and several others, with the full list available in OpenCorePkg history.

1.1 Generic Terms
• plist — Subset of ASCII Property List format written in XML, also know as XML plist format version

1. Uniform Type Identifier (UTI): com.apple.property-list. Plists consist of plist objects, which are
combined to form a hierarchical structure. Due to plist format not being well-defined, all the definitions of this
document may only be applied after plist is considered valid by running plutil -lint. External references:
https://www.apple.com/DTDs/PropertyList-1.0.dtd, man plutil.

• plist type — plist collections (plist array, plist dictionary, plist key) and primitives (plist string,
plist data, plist date, plist boolean, plist integer, plist real).

• plist object — definite realisation of plist type, which may be interpreted as value.

• plist array — array-like collection, conforms to array. Consists of zero or more plist objects.

• plist dictionary — map-like (associative array) collection, conforms to dict. Consists of zero or more plist
keys.

• plist key — contains one plist object going by the name of plist key, conforms to key. Consists of
printable 7-bit ASCII characters.

• plist string — printable 7-bit ASCII string, conforms to string.

• plist data — base64-encoded blob, conforms to data.

• plist date — ISO-8601 date, conforms to date, unsupported.

• plist boolean — logical state object, which is either true (1) or false (0), conforms to true and false.

• plist integer — possibly signed integer number in base 10, conforms to integer. Fits in 64-bit unsigned integer
in two’s complement representation, unless a smaller signed or unsigned integral type is explicitly mentioned in
specific plist object description.

• plist real — floating point number, conforms to real, unsupported.

• plist metadata — value cast to data by the implementation. Permits passing plist string, in which case
the result is represented by a null-terminated sequence of bytes (aka C string), plist integer, in which case
the result is represented by 32-bit little endian sequence of bytes in two’s complement representation, plist
boolean, in which case the value is one byte: 01 for true and 00 for false, and plist data itself. All other
types or larger integers invoke undefined behaviour.

3

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Errata/Errata.pdf
https://dortania.github.io
https://dortania.github.io/OpenCore-Install-Guide
https://dortania.github.io/getting-started
https://dortania.github.io/getting-started
https://github.com/acidanthera/bugtracker
https://github.com/acidanthera/OpenCorePkg/commits/master/Docs

2 Configuration

2.1 Configuration Terms
• OC config — OpenCore Configuration file in plist format named config.plist. It has to provide extensible

way to configure OpenCore and is structured to be separated into multiple named sections situated in the root
plist dictionary. These sections are permitted to have plist array or plist dictionary types and are
described in corresponding sections of this document.

• valid key — plist key object of OC config described in this document or its future revisions. Besides explicitly
described valid keys, keys starting with # symbol (e.g. #Hello) are also considered valid keys and behave as
comments, effectively discarding their value, which is still required to be a valid plist object. All other plist
keys are not valid, and their presence yields to undefined behaviour.

• valid value — valid plist object of OC config described in this document that matches all the additional
requirements in specific plist object description if any.

• invalid value — valid plist object of OC config described in this document that is of other plist type,
does not conform to additional requirements found in specific plist object description (e.g. value range), or
missing from the corresponding collection. Invalid value is read with or without an error message as any
possible value of this plist object in an undetermined manner (i.e. the values may not be same across the
reboots). Whilst reading an invalid value is equivalent to reading certain defined valid value, applying
incompatible value to the host system may yield to undefined behaviour.

• optional value — valid value of OC config described in this document that reads in a certain defined manner
provided in specific plist object description (instead of invalid value) when not present in OC config. All
other cases of invalid value do still apply. Unless explicitly marked as optional value, any other value is
required to be present and reads to invalid value if missing.

• fatal behaviour — behaviour leading to boot termination. Implementation must stop the boot process from
going any further until next host system boot. It is allowed but not required to perform cold reboot or show any
warning message.

• undefined behaviour — behaviour not prescribed by this document. Implementation is allowed to take any
measures including but not limited to fatal behaviour, assuming any states or values, or ignoring, unless these
measures negatively affect system security in general.

2.2 Configuration Processing
OC config is guaranteed to be processed at least once if it was found. Depending on OpenCore bootstrapping
mechanism multiple OC config files may lead to reading any of them. No OC Config may be present on disk, in which
case all the values read follow the rules of invalid value and optional value.

OC config has size, nesting, and key amount limitations. OC config size does not exceed 16 MBs. OC config has no
more than 8 nesting levels. OC config has up to 16384 XML nodes (i.e. one plist dictionary item is counted as a
pair of nodes) within each plist object.

Reading malformed OC config file leads to undefined behaviour. Examples of malformed OC config cover at least
the following cases:

• files non-conformant to plist DTD
• files with unsupported or non-conformant plist objects found in this document
• files violating size, nesting, and key amount limitations

It is recommended but not required to abort loading malformed OC config and continue as if no OC config was
present. For forward compatibility it is recommended but not required for the implementation to warn about the use of
invalid values. Recommended practice of interpreting invalid values is to conform to the following convention
where applicable:

4

Type Value
plist string Empty string (<string></string>)
plist data Empty data (<data></data>)
plist integer 0 (<integer>0</integer>)
plist boolean False (<false/>)
plist tristate False (<false/>)

2.3 Configuration Structure
OC config is separated into following sections, which are described in separate sections of this document. By default it
is tried to not enable anything and optionally provide kill switches with Enable property for plist dict entries. In
general the configuration is written idiomatically to group similar actions in subsections:

• Add provides support for data addition. Existing data will not be overridden, and needs to be handled separately
with Delete if necessary.

• Delete provides support for data removal.
• Patch provides support for data modification.
• Quirks provides support for specific hacks.

Root configuration entries consist of the following:

• ACPI
• Booter
• DeviceProperties
• Kernel
• Misc
• NVRAM
• PlatformInfo
• UEFI

It is possible to perform basic validation of the configuration by using ocvalidate utility. Please note, that ocvalidate
must match the used OpenCore release and may not be able to detect all configuration flaws present in the file.

Note: Currently most properties try to have defined values even if not specified in the configuration for safety reasons.
This behaviour should not be relied upon, and all fields must be properly specified in the configuration.

5

3 Setup

3.1 Directory Structure

ESP
EFI

BOOT
BOOTx64.efi

OC
ACPI

DSDT.aml
SSDT-1.aml
MYTABLE.aml

Bootstrap
Bootstrap.efi

Drivers
MyDriver.efi

OtherDriver.efi
Kexts

MyKext.kext

OtherKext.kext
Resources

Audio
Font
Image

Label
Tools

Tool.efi
OpenCore.efi
config.plist
vault.plist
vault.sig

boot
nvram.plist
opencore-YYYY-MM-DD-HHMMSS.txt
panic-YYYY-MM-DD-HHMMSS.txt
SysReport

Figure 1. Directory Structure

When directory boot is used the directory structure used should follow the description on Directory Structure figure.
Available entries include:

• BOOTx64.efi and Bootstrap.efi
Initial bootstrap loaders, which loads OpenCore.efi unless it was already started as a driver. BOOTx64.efi is

6

loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as
a custom option to let OpenCore coexist with operating systems using BOOTx64.efi as their own loaders (e.g.
Windows), see BootProtect for more details.

• boot
Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Resources
Directory used for storing media resources, such as audio files for screen reader support. See UEFI Audio
Properties section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter driver responsible for operating system loading. The directory OpenCore.efi resides is called the
root directory. By default root directory is set to EFI\OC, however, when launching OpenCore.efi directly
or through Bootstrap.efi, other directories containing OpenCore.efi can also be supported.

• config.plist
OC Config.

• vault.plist
Hashes for all files potentially loadable by OC Config.

• vault.sig
Signature for vault.plist.

• SysReport
Directory containing system reports generated by SysReport option.

• nvram.plist
OpenCore variable import file.

• opencore-YYYY-MM-DD-HHMMSS.txt
OpenCore log file.

• panic-YYYY-MM-DD-HHMMSS.txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including
0-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information regarding external resources
such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. OpenDuetPkg is one of the known
UEFI environment providers for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be
installed with a dedicated tool — BootInstall (bundled with OpenCore). Third-party utilities can be used to perform
this on systems other than macOS.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications

7

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

across all published updates.

3.3 Contribution
OpenCore can be compiled as an ordinary EDK II package. Since UDK development was abandoned by TianoCore,
OpenCore requires the use of EDK II Stable. Currently supported EDK II release is hosted in acidanthera/audk. The
required patches for the package are present in Patches directory.

The only officially supported toolchain is XCODE5. Other toolchains might work, but are neither supported, nor
recommended. Contribution of clean patches is welcome. Please do follow EDK II C Codestyle.

To compile with XCODE5, besides Xcode, one should also install NASM and MTOC. The latest Xcode version is
recommended for use despite the toolchain name. Example command sequence may look as follows:
git clone --depth=1 https://github.com/acidanthera/audk UDK
cd UDK
git submodule update --init --recommend-shallow
git clone --depth=1 https://github.com/acidanthera/OpenCorePkg
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p OpenCorePkg/OpenCorePkg.dsc

Listing 1: Compilation Commands

For IDE usage Xcode projects are available in the root of the repositories. Another approach could be Sublime Text
with EasyClangComplete plugin. Add .clang_complete file with similar content to the UDK root:
-I/UefiPackages/MdePkg
-I/UefiPackages/MdePkg/Include
-I/UefiPackages/MdePkg/Include/X64
-I/UefiPackages/MdeModulePkg
-I/UefiPackages/MdeModulePkg/Include
-I/UefiPackages/MdeModulePkg/Include/X64
-I/UefiPackages/OpenCorePkg/Include/AMI
-I/UefiPackages/OpenCorePkg/Include/Acidanthera
-I/UefiPackages/OpenCorePkg/Include/Apple
-I/UefiPackages/OpenCorePkg/Include/Apple/X64
-I/UefiPackages/OpenCorePkg/Include/Duet
-I/UefiPackages/OpenCorePkg/Include/Generic
-I/UefiPackages/OpenCorePkg/Include/Intel
-I/UefiPackages/OpenCorePkg/Include/Microsoft
-I/UefiPackages/OpenCorePkg/Include/VMware
-I/UefiPackages/OvmfPkg/Include
-I/UefiPackages/UefiCpuPkg/Include
-IInclude
-include
/UefiPackages/MdePkg/Include/Uefi.h
-fshort-wchar
-Wall
-Wextra
-Wno-unused-parameter
-Wno-missing-braces
-Wno-missing-field-initializers
-Wno-tautological-compare
-Wno-sign-compare
-Wno-varargs
-Wno-unused-const-variable
-DOC_TARGET_NOOPT=1
-DNO_MSABI_VA_FUNCS=1

Listing 2: ECC Configuration

8

https://github.com/tianocore/tianocore.github.io/wiki/EDK-II
https://github.com/tianocore/tianocore.github.io/wiki/UDK
https://github.com/tianocore/tianocore.github.io/wiki/EDK-II#stable-tags
https://github.com/acidanthera/audk
https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://developer.apple.com/xcode
https://www.nasm.us
https://github.com/acidanthera/ocbuild/tree/master/external
https://www.sublimetext.com
https://niosus.github.io/EasyClangComplete

Warning: Tool developers modifying config.plist or any other OpenCore files must ensure that their tool checks
for opencore-version NVRAM variable (see Debug Properties section below) and warn the user if the version listed
is unsupported or prerelease. OpenCore configuration may change across the releases and the tool shall ensure that it
carefully follows this document. Failure to do so may result in this tool to be considered as malware and blocked with
all possible means.

3.4 Coding conventions
As with any other project, we have conventions that we follow during development. All third-party contributors are
advised to adhere to the conventions listed below before submitting patches. To minimise abortive work and the
potential rejection of submissions, third-party contributors should initially raise issues to the Acidanthera Bugtracker
for feedback before submitting patches.

Organisation. The codebase is contained in the OpenCorePkg repository, which is the primary EDK II package.

• Whenever changes are required in multiple repositories, separate pull requests should be sent to each.
• Committing the changes should happen firstly to dependent repositories, secondly to primary repositories to

avoid automatic build errors.
• Each unique commit should compile with XCODE5 and preferably with other toolchains. In the majority of the

cases it can be checked by accessing the CI interface. Ensuring that static analysis finds no warnings is preferred.
• External pull requests and tagged commits must be validated. That said, commits in master may build but may

not necessarily work.
• Internal branches should be named as follows: author-name-date, e.g. vit9696-ballooning-20191026.
• Commit messages should be prefixed with the primary module (e.g. library or code module) the changes were

made in. For example, OcGuardLib: Add OC_ALIGNED macro. For non-library changes Docs or Build prefixes
are used.

Design. The codebase is written in a subset of freestanding C11 (C17) supported by most modern toolchains used by
EDK II. Applying common software development practices or requesting clarification is recommended if any particular
case is not discussed below.

• Never rely on undefined behaviour and try to avoid implementation defined behaviour unless explicitly covered
below (feel free to create an issue when a relevant case is not present).

• Use OcGuardLib to ensure safe integral arithmetics avoiding overflows. Unsigned wraparound should be relied on
with care and reduced to the necessary amount.

• Check pointers for correct alignment with OcGuardLib and do not rely on the architecture being able to dereference
unaligned pointers.

• Use flexible array members instead of zero-length or one-length arrays where necessary.
• Use static assertions (STATIC_ASSERT) for type and value assumptions, and runtime assertions (ASSERT) for

precondition and invariant sanity checking. Do not use runtime assertions to check for errors as they should never
alter control flow and potentially be excluded.

• Assume UINT32/INT32 to be int-sized and use %u, %d, and %x to print them.
• Assume UINTN/INTN to be of unspecified size, and cast them to UINT64/INT64 for printing with %Lu, %Ld and so

on as normal.
• Do not rely on integer promotions for numeric literals. Use explicit casts when the type is implementation-

dependent or suffixes when type size is known. Assume U for UINT32 and ULL for UINT64.
• Do ensure unsigned arithmetics especially in bitwise maths, shifts in particular.
• sizeof operator should take variables instead of types where possible to be error prone. Use ARRAY_SIZE to

obtain array size in elements. Use L_STR_LEN and L_STR_SIZE macros from OcStringLib to obtain string literal
sizes to ensure compiler optimisation.

• Do not use goto keyword. Prefer early return, break, or continue after failing to pass error checking instead of
nesting conditionals.

• Use EFIAPI, force UEFI calling convention, only in protocols, external callbacks between modules, and functions
with variadic arguments.

• Provide inline documentation to every added function, at least describing its inputs, outputs, precondition,
postcondition, and giving a brief description.

• Do not use RETURN_STATUS. Assume EFI_STATUS to be a matching superset that is to be always used when
BOOLEAN is not enough.

• Security violations should halt the system or cause a forced reboot.

9

https://github.com/acidanthera/bugtracker
https://travis-ci.com/acidanthera

Codestyle. The codebase follows EDK II codestyle with few changes and clarifications.

• Write inline documentation for the functions and variables only once: in headers, where a header prototype is
available, and inline for static variables and functions.

• Use line length of 120 characters or less, preferably 100 characters.
• Use spaces after casts, e.g. (VOID *)(UINTN) Variable.
• Use SPDX license headers as shown in acidanthera/bugtracker#483.

3.5 Debugging
The codebase incorporates EDK II debugging and few custom features to improve the experience.

• Use module prefixes, 2-5 letters followed by a colon (:), for debug messages. For OpenCorePkg use OC:, for
libraries and drivers use their own unique prefixes.

• Do not use dots (.) in the end of debug messages and separate EFI_STATUS, printed by %r, with a hyphen (e.g.
OCRAM: Allocation of %u bytes failed - %r\n).

• Use DEBUG_CODE_BEGIN () and DEBUG_CODE_END () constructions to guard debug checks that may potentially
reduce the performance of release builds and are otherwise unnecessary.

• Use DEBUG macro to print debug messages during normal functioning, and RUNTIME_DEBUG for debugging after
EXIT_BOOT_SERVICES.

• Use DEBUG_VERBOSE debug level to leave debug messages for future debugging of the code, which are currently
not necessary. By default DEBUG_VERBOSE messages are ignored even in DEBUG builds.

• Use DEBUG_INFO debug level for all non critical messages (including errors) and DEBUG_BULK_INFO for extensive
messages that should not appear in NVRAM log that is heavily limited in size. These messages are ignored in
RELEASE builds.

• Use DEBUG_ERROR to print critical human visible messages that may potentially halt the boot process, and
DEBUG_WARN for all other human visible errors, RELEASE builds included.

When trying to find the problematic change it is useful to rely on git-bisect functionality. There also are some
unofficial resources that provide per-commit binary builds of OpenCore, such as Dortania.

10

https://github.com/tianocore/tianocore.github.io/wiki/Code-Style-C
https://github.com/acidanthera/bugtracker/issues/483
https://git-scm.com/docs/git-bisect
https://dortania.github.io/builds

4 ACPI

4.1 Introduction
ACPI (Advanced Configuration and Power Interface) is an open standard to discover and configure computer hardware.
ACPI specification defines the standard tables (e.g. DSDT, SSDT, FACS, DMAR) and various methods (e.g. _DSM, _PRW) for
implementation. Modern hardware needs little changes to maintain ACPI compatibility, yet some of those are provided
as a part of OpenCore.

To compile and disassemble ACPI tables iASL compiler can be used developed by ACPICA. GUI front-end to iASL
compiler can be downloaded from Acidanthera/MaciASL.

ACPI changes apply globally (to every operating system) with the following effective order:

• Patch is processed.
• Delete is processed.
• Add is processed.
• Quirks are processed.

Applying the changes globally resolves the problems of incorrect operating system detection, which is not possible
before the operating system boots according to the ACPI specification, operating system chainloading, and harder
ACPI debugging. For this reason it may be required to carefully use _OSI method when writing the changes.

Applying the patches early makes it possible to write so called “proxy” patches, where the original method is patched
in the original table and is implemented in the patched table.

There are many places providing ACPI tables and workarounds. Commonly used ACPI tables are provided with
OpenCore, VirtualSMC, VoodooPS2, and WhateverGreen releases. Besides those there are several third-party
instructions commonly found on AppleLife in Laboratory and DSDT subforums (e.g. Battery register splitting guide).
A slightly more user-friendly explanation of some tables included with OpenCore can also be found in Dortania’s
Getting started with ACPI guide. For more exotic cases there also are several other places including daliansky’s ACPI
sample collection, but the quality of the suggested solutions will vary from case to case.

4.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected tables from OC/ACPI directory.

Designed to be filled with plist dict values, describing each add entry. See Add Properties section below.

2. Delete
Type: plist array
Failsafe: Empty
Description: Remove selected tables from ACPI stack.

Designed to be filled with plist dict values, describing each delete entry. See Delete Properties section below.

3. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in ACPI tables before table addition or removal.

Designed to be filled with plist dictionary values describing each patch entry. See Patch Properties section
below.

4. Quirks
Type: plist dict
Description: Apply individual ACPI quirks described in Quirks Properties section below.

11

https://uefi.org/specifications
https://github.com/acpica/acpica
https://www.acpica.org
https://github.com/acidanthera/MaciASL/releases
https://applelife.ru/forums/xakintosh.67
https://applelife.ru/forums/dsdt.129
https://applelife.ru/posts/498967
https://dortania.github.io
https://dortania.github.io/Getting-Started-With-ACPI
https://github.com/daliansky
https://github.com/daliansky/OC-little
https://github.com/daliansky/OC-little

4.3 Add Properties
1. Comment

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI table will not be added unless set to true.

3. Path
Type: plist string
Failsafe: Empty string
Description: File paths meant to be loaded as ACPI tables. Example values include DSDT.aml, SubDir/SSDT-8.aml,
SSDT-USBX.aml, etc.

ACPI table load order follows the item order in the array. All ACPI tables load from OC/ACPI directory.

Note: All tables but tables with DSDT table identifier (determined by parsing data not by filename) insert new
tables into ACPI stack. DSDT, unlike the rest, performs replacement of DSDT table.

4.4 Delete Properties
1. All

Type: plist boolean
Failsafe: false
Description: If set to true, all ACPI tables matching the condition will be deleted. Otherwise only first matched
table.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI table will not be removed unless set to true.

4. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

5. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

6. TableSignature
Type: plist data, 4 bytes
Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

Note: Make sure not to specify table signature when the sequence needs to be replaced in multiple places.
Especially when performing different kinds of renames.

12

4.5 Patch Properties
1. Comment

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

2. Count
Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This ACPI patch will not be used unless set to true.

4. Find
Type: plist data
Failsafe: Empty data
Description: Data to find. Must equal to Replace in size.

5. Limit
Type: plist integer
Failsafe: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole ACPI table.

6. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

7. OemTableId
Type: plist data, 8 bytes
Failsafe: All zero
Description: Match table OEM ID to be equal to this value unless all zero.

8. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

9. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

11. TableLength
Type: plist integer
Failsafe: 0
Description: Match table size to be equal to this value unless 0.

12. TableSignature
Type: plist data, 4 bytes

13

Failsafe: All zero
Description: Match table signature to be equal to this value unless all zero.

In the majority of the cases ACPI patches are not useful and harmful:

• Avoid renaming devices with ACPI patches. This may fail or perform improper renaming of unrelated devices
(e.g. EC and EC0), be unnecessary, or even fail to rename devices in select tables. For ACPI consistency it is much
safer to rename devices at I/O Registry level, as done by WhateverGreen.

• Try to avoid patching _OSI to support a higher level of feature sets whenever possible. Commonly this enables a
number of hacks on APTIO firmware, which result in the need to add more patches. Modern firmware generally
does not need it, and those that do are fine with much smaller patches. However, laptop vendors usually rely on
this method to determine the availability of functions such as modern I2C input support, thermal adjustment
and custom feature additions.

• Avoid patching embedded controller event _Qxx just for enabling brightness keys. The conventional process to
find these keys usually involves massive modification on DSDT and SSDTs and the debug kext is not stable on
newer systems. Please switch to built-in brightness key discovery of BrightnessKeys instead.

• Try to avoid hacky changes such as renaming _PRW or _DSM whenever possible.

Several cases, where patching actually does make sense, include:

• Refreshing HPET (or another device) method header to avoid compatibility checks by _OSI on legacy hardware.
_STA method with if ((OSFL () == Zero)) { If (HPTE) ... Return (Zero) content may be forced to
always return 0xF by replacing A0 10 93 4F 53 46 4C 00 with A4 0A 0F A3 A3 A3 A3 A3.

• To provide custom method implementation with in an SSDT, for instance, to inject shutdown fix on certain
computers, the original method can be replaced with a dummy name by patching _PTS with ZPTS and adding a
callback to original method.

Tianocore AcpiAml.h source file may help understanding ACPI opcodes.

Note: Patches of different Find and Replace lengths are unsupported as they may corrupt ACPI tables and make the
system unstable due to area relocation. If such changes are needed, the utilisation of “proxy” patching or the padding
of NOP to the remaining area might be taken into account.

4.6 Quirks Properties
1. FadtEnableReset

Type: plist boolean
Failsafe: false
Description: Provide reset register and flag in FADT table to enable reboot and shutdown.

Mainly required on legacy hardware and few laptops. Can also fix power-button shortcuts. Not recommended
unless required.

2. NormalizeHeaders
Type: plist boolean
Failsafe: false
Description: Cleanup ACPI header fields to workaround macOS ACPI implementation bug causing boot crashes.
Reference: Debugging AppleACPIPlatform on 10.13 by Alex James aka theracermaster. The issue is fixed in
macOS Mojave (10.14).

3. RebaseRegions
Type: plist boolean
Failsafe: false
Description: Attempt to heuristically relocate ACPI memory regions. Not recommended.

ACPI tables are often generated dynamically by underlying firmware implementation. Among the position-
independent code, ACPI tables may contain physical addresses of MMIO areas used for device configuration,
usually grouped in regions (e.g. OperationRegion). Changing firmware settings or hardware configuration,
upgrading or patching the firmware inevitably leads to changes in dynamically generated ACPI code, which
sometimes lead to the shift of the addresses in aforementioned OperationRegion constructions.

14

https://github.com/acidanthera/WhateverGreen
https://github.com/acidanthera/BrightnessKeys
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/AcpiAml.h
https://alextjam.es/debugging-appleacpiplatform/

For this reason it is very dangerous to apply any kind of modifications to ACPI tables. The most reasonable
approach is to make as few as possible changes to ACPI and try to not replace any tables, especially DSDT.
When this is not possible, then at least attempt to ensure that custom DSDT is based on the most recent DSDT
or remove writes and reads for the affected areas.

When nothing else helps this option could be tried to avoid stalls at PCI Configuration Begin phase of macOS
booting by attempting to fix the ACPI addresses. It does not do magic, and only works with most common cases.
Do not use unless absolutely required.

4. ResetHwSig
Type: plist boolean
Failsafe: false
Description: Reset FACS table HardwareSignature value to 0.

This works around firmware that fail to maintain hardware signature across the reboots and cause issues with
waking from hibernation.

5. ResetLogoStatus
Type: plist boolean
Failsafe: false
Description: Reset BGRT table Displayed status field to false.

This works around firmware that provide a BGRT table but fail to handle screen updates afterwards.

15

5 Booter

5.1 Introduction
This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmware. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If this is used for the first time on a customised firmware, there is a list of checks to do first. Prior to starting, the
following requirements should be fulfilled:

• Most up-to-date UEFI firmware (check the motherboard vendor website).
• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably

ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, this option should be checked first whenever erratic boot failures are encountered.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be

booted at all or No slide values are usable! Use custom slide! message can be seen in the log.
• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider patching it if no option

is available (for advanced users only). See VerifyMsrE2 notes for more details.
• CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older,

GOP ROM may have to be flashed first. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in
case of any potential confusion.

• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may

have to be disabled in firmware settings present.

When debugging sleep issues Power Nap and automatic power off may be (temporarily) disabled, which appear to
sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general ACPI tables should be looked up first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties
1. MmioWhitelist

Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See MmioWhitelist Properties section below.

2. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in booter.

Designed to be filled with plist dictionary values, describing each patch. See Patch Properties section below.

3. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

16

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

5.3 MmioWhitelist Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This address will be devirtualised unless set to true.

5.4 Patch Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Booter patch architecture (Any, i386, x86_64).

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Count
Type: plist integer
Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This booter patch will not be used unless set to true.

5. Find
Type: plist data
Failsafe: Empty data
Description: Data to find. This must equal to Replace in size.

6. Identifier
Type: plist string
Failsafe: Empty string
Description: Apple for macOS booter (generally boot.efi); or a name with suffix (e.g. bootmgfw.efi) for a
specific booter; or Any / empty string (failsafe) to match any booter.

7. Limit
Type: plist integer
Failsafe: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole booter.

17

8. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Find in size otherwise.

9. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

10. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

11. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

5.5 Quirks Properties
1. AllowRelocationBlock

Type: plist boolean
Failsafe: false
Description: Allows booting macOS through a relocation block.

Relocation block is a scratch buffer allocated in lower 4 GB to be used for loading the kernel and related structures
by EfiBoot on firmwares where lower memory is otherwise occupied by the (assumed to be) non-runtime data.
Right before kernel startup the relocation block is copied back to lower addresses. Similarly all the other addresses
pointing to relocation block are also carefully adjusted. Relocation block can be used when:

• No better slide exists (all the memory is used)
• slide=0 is forced (by an argument or safe mode)
• KASLR (slide) is unsupported (this is macOS 10.7 or older)

This quirk requires ProvideCustomSlide to also be enabled and generally needs AvoidRuntimeDefrag to work
correctly. Hibernation is not supported when booting with a relocation block (but relocation block is not always
used when the quirk is enabled).

Note: While this quirk is required to run older macOS versions on platforms with used lower memory it is not
compatible with some hardware and macOS 11. In this case you may try to use EnableSafeModeSlide instead.

2. AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on firmware that uses
SMM backing for select services such as variable storage. SMM may try to access physical addresses, but they get
moved by boot.efi.

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

3. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board without additional measures. In general this frees from 64 to 256 megabytes of memory (present

18

in the debug log), and on some platforms it is the only way to boot macOS, which otherwise fails with allocation
error at bootloader stage.

This option is generally useful on all types of firmware, except some very old ones such as Sandy Bridge. On some
types of firmware, a list of addresses that need virtual addresses for proper NVRAM and hibernation functionality
may be required. Use the MmioWhitelist section for this.

4. DisableSingleUser
Type: plist boolean
Failsafe: false
Description: Disable single user mode.

This is a security option that restricts the activation of single user mode by ignoring CMD+S hotkey and -s boot
argument. The behaviour with this quirk enabled is supposed to match T2-based model behaviour. Refer to this
archived article to understand how to use single user mode with this quirk enabled.

5. DisableVariableWrite
Type: plist boolean
Failsafe: false
Description: Protect from macOS NVRAM write access.

This is a security option that restricts NVRAM access in macOS. This quirk requires OC_FIRMWARE_RUNTIME
protocol implemented in OpenRuntime.efi.

Note: This quirk can also be used as an ugly workaround to buggy UEFI runtime services implementations that
fail to write variables to NVRAM and break the rest of the operating system.

6. DiscardHibernateMap
Type: plist boolean
Failsafe: false
Description: Reuse original hibernate memory map.

This option forces XNU kernel to ignore newly supplied memory map and assume that it did not change after
waking from hibernation. This behaviour is required to work by Windows, which mandates to preserve runtime
memory size and location after S4 wake.

Note: This may be used to workaround buggy memory maps on older hardware, and is now considered rare legacy.
Examples of such hardware are Ivy Bridge laptops with Insyde firmware, such as Acer V3-571G. Do not use this
unless a complete understanding of the consequences can be ensured.

7. EnableSafeModeSlide
Type: plist boolean
Failsafe: false
Description: Patch bootloader to have KASLR enabled in safe mode.

This option is relevant to the users that have issues booting to safe mode (e.g. by holding shift or using -x boot
argument). By default safe mode forces 0 slide as if the system was launched with slide=0 boot argument. This
quirk tries to patch boot.efi to lift that limitation and let some other value (from 1 to 255) be used. This quirk
requires ProvideCustomSlide to be enabled.

Note: The necessity of this quirk is determined by safe mode availability. If booting to safe mode fails, this option
can be tried to be enabled.

8. EnableWriteUnprotector
Type: plist boolean
Failsafe: false
Description: Permit write access to UEFI runtime services code.

This option bypasses RX̂ permissions in code pages of UEFI runtime services by removing write protection (WP)
bit from CR0 register during their execution. This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in
OpenRuntime.efi.

Note: This quirk may potentially weaken firmware security, please use RebuildAppleMemoryMap if the firmware
supports memory attributes table (MAT). Refer to OCABC: MAT support is 1/0 log entry to determine whether
MAT is supported.

19

https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573
https://web.archive.org/web/20200517125051/https://support.apple.com/en-us/HT201573
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-uefi#hibernation-state-s4-transition-requirements

9. ForceExitBootServices
Type: plist boolean
Failsafe: false
Description: Retry ExitBootServices with new memory map on failure.

Try to ensure that ExitBootServices call succeeds even with outdated MemoryMap key argument by obtaining
current memory map and retrying ExitBootServices call.

Note: The necessity of this quirk is determined by early boot crashes of the firmware. Do not use this without a
full understanding of the consequences.

10. ProtectMemoryRegions
Type: plist boolean
Failsafe: false
Description: Protect memory regions from incorrect access.

Some types of firmware incorrectly map select memory regions:

• CSM region can be marked as boot services code or data, which leaves it as free memory for XNU kernel.
• MMIO regions can be marked as reserved memory and stay unmapped, but may be required to be accessible

at runtime for NVRAM support.

This quirk attempts to fix types of these regions, e.g. ACPI NVS for CSM or MMIO for MMIO.

Note: The necessity of this quirk is determined by artifacts, sleep wake issues, and boot failures. Only very old
firmware typically need this quirk.

11. ProtectSecureBoot
Type: plist boolean
Failsafe: false
Description: Protect UEFI Secure Boot variables from being written.

Reports security violation during attempts to write to db, dbx, PK, and KEK variables from the operating system.

Note: This quirk mainly attempts to avoid issues with NVRAM implementations with problematic defragmentation,
such as select Insyde or MacPro5,1.

12. ProtectUefiServices
Type: plist boolean
Failsafe: false
Description: Protect UEFI services from being overridden by the firmware.

Some modern firmware, including on virtual machines such as VMware, may update pointers to UEFI services
during driver loading and related actions. Consequentially this directly breaks other quirks that affect memory
management, such as DevirtualiseMmio, ProtectMemoryRegions, or RebuildAppleMemoryMap, and may also
break other quirks depending on the effects of these.

Note: On VMware the need for this quirk may be diagnosed by “Your Mac OS guest might run unreliably with
more than one virtual core.” message.

13. ProvideCustomSlide
Type: plist boolean
Failsafe: false
Description: Provide custom KASLR slide on low memory.

This option performs memory map analysis of the firmware and checks whether all slides (from 1 to 255) can be
used. As boot.efi generates this value randomly with rdrand or pseudo randomly rdtsc, there is a chance of
boot failure when it chooses a conflicting slide. In case potential conflicts exist, this option forces macOS to use a
pseudo random value among the available ones. This also ensures that slide= argument is never passed to the
operating system for security reasons.

Note: The necessity of this quirk is determined by OCABC: Only N/256 slide values are usable! message
in the debug log. If the message is present, this option is to be enabled.

14. ProvideMaxSlide
Type: plist integer

20

Failsafe: 0
Description: Provide maximum KASLR slide when higher ones are unavailable.

This option overrides the maximum slide of 255 by a user specified value between 1 and 254 inclusive when
ProvideCustomSlide is enabled. It is believed that modern firmware allocates pool memory from top to bottom,
effectively resulting in free memory when slide scanning is used later as temporary memory during kernel loading.
When such memory is not available, this option can stop the evaluation of higher slides.

Note: The necessity of this quirk is determined by random boot failure when ProvideCustomSlide is enabled
and the randomized slide fall into the unavailable range. When AppleDebug is enabled, usually the debug log
may contain messages such as AAPL: [EB|‘LD:LKC] } Err(0x9). To find the optimal value, manually append
slide=X to boot-args and log the largest one that will not result in boot failures.

15. RebuildAppleMemoryMap
Type: plist boolean
Failsafe: false
Description: Generate Memory Map compatible with macOS.

Apple kernel has several limitations in parsing UEFI memory map:

• Memory map size must not exceed 4096 bytes as Apple kernel maps it as a single 4K page. Since some types
of firmware can have very large memory maps, potentially over 100 entries, the Apple kernel will crash on
boot.

• Memory attributes table is ignored. EfiRuntimeServicesCode memory statically gets RX permissions, and
all other memory types get RW permissions. Since some firmware drivers may write to global variables
at runtime, Apple kernel will crash at calling UEFI runtime services, unless driver .data section has
EfiRuntimeServicesData type.

To workaround these limitations, this quirk applies memory attribute table permissions to the memory map
passed to the Apple kernel and optionally attempts to unify contiguous slots of similar types if the resulting
memory map exceeds 4 KB.

Note 1 : Since several types of firmware come with incorrect memory protection tables, this quirk often comes
paired with SyncRuntimePermissions.

Note 2 : The necessity of this quirk is determined by early boot failures. This quirk replaces EnableWriteUnprotector
on firmware supporting Memory Attribute Tables (MAT). This quirk is usually unnecessary when using
OpenDuetPkg, but may be required to boot macOS 10.6, and earlier, for reasons that are not clear.

16. SetupVirtualMap
Type: plist boolean
Failsafe: false
Description: Setup virtual memory at SetVirtualAddresses.

Some types of firmware access memory by virtual addresses after a SetVirtualAddresses call, resulting in early
boot crashes. This quirk workarounds the problem by performing early boot identity mapping of assigned virtual
addresses to physical memory.

Note: The necessity of this quirk is determined by early boot failures. Currently, new firmware with memory
protection support (such as OVMF) do not support this quirk. See acidanthera/bugtracker#719.

17. SignalAppleOS
Type: plist boolean
Failsafe: false
Description: Report macOS being loaded through OS Info for any OS.

This quirk is useful on Mac firmware, which behaves differently in different OS. For example, it is supposed to
enable Intel GPU in Windows and Linux in some dual-GPU MacBook models.

18. SyncRuntimePermissions
Type: plist boolean
Failsafe: false
Description: Update memory permissions for runtime environment.

Some types of firmware fail to properly handle runtime permissions:

21

https://github.com/acidanthera/bugtracker/issues/719

• They incorrectly mark OpenRuntime as not executable in the memory map.
• They incorrectly mark OpenRuntime as not executable in the memory attributes table.
• They lose entries from the memory attributes table after OpenRuntime is loaded.
• They mark items in the memory attributes table as read-write-execute.

This quirk tries to update memory map and memory attributes table to correct this.

Note: The need for this quirk is indicated by early boot failures. Only firmware released after 2017 is typically
affected.

22

6 DeviceProperties

6.1 Introduction
Device configuration is provided to macOS with a dedicated buffer, called EfiDevicePathPropertyDatabase. This
buffer is a serialised map of DevicePaths to a map of property names and their values.

Property data can be debugged with gfxutil. To obtain current property data use the following command in macOS:

ioreg -lw0 -p IODeviceTree -n efi -r -x | grep device-properties |
sed 's/.*<//;s/>.*//' > /tmp/device-properties.hex &&
gfxutil /tmp/device-properties.hex /tmp/device-properties.plist &&
cat /tmp/device-properties.plist

Device properties are part of the IODeviceTree (gIODT) plane of macOS I/O Registry. This plane has several
construction stages relevant for the platform initialisation. While the early construction stage is performed by the
XNU kernel in the IODeviceTreeAlloc method, the majority of the construction is performed by the platform expert,
implemented in AppleACPIPlatformExpert.kext.

AppleACPIPlatformExpert incorporates two stages of IODeviceTree construction implemented by calling
AppleACPIPlatformExpert::mergeDeviceProperties:

1. During ACPI table initialisation through the recursive ACPI namespace scanning by the calls to
AppleACPIPlatformExpert::createDTNubs.

2. During IOService registration (IOServices::registerService) callbacks implemented as a part of
AppleACPIPlatformExpert::platformAdjustService function and its private worker method
AppleACPIPlatformExpert::platformAdjustPCIDevice specific to the PCI devices.

The application of the stages depends on the device presence in ACPI tables. The first stage applies very early but
exclusively to the devices present in ACPI tables. The second stage applies to all devices much later after the PCI
configuration and may repeat the first stage if the device was not present in ACPI.

For all kernel drivers, which may inspect the IODeviceTree plane without probing (e.g. Lilu and its plugins such as
WhateverGreen) it is particularly important to ensure device presence in the ACPI tables. Failing to do so may result
in all kinds of erratic behaviour caused by ignoring the injected device properties as they were not constructed at
the first stage. See SSDT-IMEI.dsl and SSDT-BRG0.dsl for an example.

6.2 Properties
1. Add

Type: plist dict
Description: Sets device properties from a map (plist dict) of device paths to a map (plist dict) of variable
names and their values in plist metadata format. Device paths must be provided in canonic string format (e.g.
PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x0)). Properties will only be set if not present and not deleted.

Note: Currently properties may only be (formerly) added by the original driver, so unless a separate driver was
installed, there is no reason to delete the variables.

2. Delete
Type: plist dict
Description: Removes device properties from a map (plist dict) of device paths to an array (plist array)
of variable names in plist string format.

6.3 Common Properties
Some known properties include:

• device-id
User-specified device identifier used for I/O Kit matching. Has 4 byte data type.

• vendor-id
User-specified vendor identifier used for I/O Kit matching. Has 4 byte data type.

23

https://github.com/acidanthera/gfxutil

• AAPL,ig-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Ivy Bridge and newer. Has 4 byte data
type.

• AAPL,snb-platform-id
Intel GPU framebuffer identifier used for framebuffer selection on Sandy Bridge. Has 4 byte data type.

• layout-id
Audio layout used for AppleHDA layout selection. Has 4 byte data type.

24

7 Kernel

7.1 Introduction
This section allows to apply different kinds of kernelspace modifications on Apple Kernel (XNU). The modifications
currently provide driver (kext) injection, kernel and driver patching, and driver blocking.

7.2 Properties
1. Add

Type: plist array
Failsafe: Empty
Description: Load selected kernel drivers from OC/Kexts directory.

Designed to be filled with plist dict values, describing each driver. See Add Properties section below. Kernel
driver load order follows the item order in the array, thus the dependencies should be written prior to their
consumers.

To track the dependency order, inspect the OSBundleLibraries key in the Info.plist of the kext. Any kext
mentioned in the OSBundleLibraries of the other kext must precede this kext.

Note: Kexts may have inner kexts (Plug-Ins) in their bundle. Each inner kext must be added separately.

2. Block
Type: plist array
Failsafe: Empty
Description: Remove selected kernel drivers from prelinked kernel.

Designed to be filled with plist dictionary values, describing each blocked driver. See Block Properties section
below.

3. Emulate
Type: plist dict
Description: Emulate select hardware in kernelspace via parameters described in Emulate Properties section
below.

4. Force
Type: plist array
Failsafe: Empty
Description: Load kernel drivers from system volume if they are not cached.

Designed to be filled with plist dict values, describing each driver. See Force Properties section below. This
section resolves the problem of injecting drivers that depend on other drivers, which are not cached otherwise.
The issue normally affects older operating systems, where various dependency kexts, such as IOAudioFamily or
IONetworkingFamily may not be present in the kernel cache by default. Kernel driver load order follows the item
order in the array, thus the dependencies should be written prior to their consumers. Force happens before Add.

Note: The signature of the “forced” kernel drivers is not checked anyhow, making the use of this feature extremely
dangerous and undesired for secure boot. This feature may not work on encrypted partitions in newer operating
systems.

5. Patch
Type: plist array
Failsafe: Empty
Description: Perform binary patches in kernel and drivers prior to driver addition and removal.

Designed to be filled with plist dictionary values, describing each patch. See Patch Properties section below.

6. Quirks
Type: plist dict
Description: Apply individual kernel and driver quirks described in Quirks Properties section below.

25

https://opensource.apple.com/source/xnu

7. Scheme
Type: plist dict
Description: Define kernelspace operation mode via parameters described in Scheme Properties section below.

7.3 Add Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext architecture (Any, i386, x86_64).

2. BundlePath
Type: plist string
Failsafe: Empty string
Description: Kext bundle path (e.g. Lilu.kext or MyKext.kext/Contents/PlugIns/MySubKext.kext).

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added unless set to true.

5. ExecutablePath
Type: plist string
Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/Lilu).

6. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or older.

Kernel version can be obtained with uname -r command, and should look like 3 numbers separated by dots, for
example 18.7.0 is the kernel version for 10.14.6. Kernel version interpretation is implemented as follows:

ParseDarwinV ersion(κ, λ, µ) = κ · 10000 Where κ ∈ (0, 99) is kernel version major
+ λ · 100 Where λ ∈ (0, 99) is kernel version minor
+ µ Where µ ∈ (0, 99) is kernel version patch

Kernel version comparison is implemented as follows:

α =
{
ParseDarwinV ersion(MinKernel), If MinKernel is valid
0 Otherwise

β =
{
ParseDarwinV ersion(MaxKernel), If MaxKernel is valid
∞ Otherwise

γ =
{
ParseDarwinV ersion(FindDarwinV ersion()), If valid "Darwin Kernel Version" is found
∞ Otherwise

f(α, β, γ) = α ≤ γ ≤ β

Here ParseDarwinV ersion argument is assumed to be 3 integers obtained by splitting Darwin kernel version
string from left to right by the . symbol. FindDarwinV ersion function looks up Darwin kernel version by
locating "Darwin Kernel Version κ.λ.µ" string in the kernel image.

7. MinKernel
Type: plist string

26

Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

8. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.4 Block Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext block architecture (Any, i386, x86_64).

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be blocked unless set to true.

4. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleTyMCEDriver).

5. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

6. MinKernel
Type: plist string
Failsafe: Empty string
Description: Blocks kernel driver on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7.5 Emulate Properties
1. Cpuid1Data

Type: plist data, 16 bytes
Failsafe: All zero
Description: Sequence of EAX, EBX, ECX, EDX values to replace CPUID (1) call in XNU kernel.

This property primarily serves for three needs:

• Enabling support of an unsupported CPU model (e.g. Intel Pentium).
• Enabling support of a CPU model that is not yet supported by a specific version of macOS which usually is

old.
• Enabling XCPM support for an unsupported CPU variant.

Note 1 : It may also be the case that the CPU model is supported but there is no power management supported
(e.g. virtual machines). In this case, MinKernel and MaxKernel can be set to restrict CPU virtualisation and
dummy power management patches to the particular macOS kernel version.

27

Note 2 : Normally it is only the value of EAX that needs to be taken care of, since it represents the full CPUID.
The remaining bytes are to be left as zeroes. Byte order is Little Endian, so for example, C3 06 03 00 stands for
CPUID 0x0306C3 (Haswell).

Note 3 : For XCPM support it is recommended to use the following combinations.

• Haswell-E (0x0306F2) to Haswell (0x0306C3):
Cpuid1Data: C3 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

• Broadwell-E (0x0406F1) to Broadwell (0x0306D4):
Cpuid1Data: D4 06 03 00 00 00 00 00 00 00 00 00 00 00 00 00
Cpuid1Mask: FF FF FF FF 00 00 00 00 00 00 00 00 00 00 00 00

Note 4 : Note that the following configurations are unsupported by XCPM (at least out of the box):

• Consumer Ivy Bridge (0x0306A9) as Apple disabled XCPM for Ivy Bridge and recommends legacy power
management for these CPUs. _xcpm_bootstrap should manually be patched to enforce XCPM on these
CPUs instead of this option.

• Low-end CPUs (e.g. Haswell+ Pentium) as they are not supported properly by macOS. Legacy hacks for
older models can be found in the Special NOTES section of acidanthera/bugtracker#365.

2. Cpuid1Mask
Type: plist data, 16 bytes
Failsafe: All zero
Description: Bit mask of active bits in Cpuid1Data.

When each Cpuid1Mask bit is set to 0, the original CPU bit is used, otherwise set bits take the value of Cpuid1Data.

3. DummyPowerManagement
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables AppleIntelCpuPowerManagement.

Note 1 : This option is a preferred alternative to NullCpuPowerManagement.kext for CPUs without native power
management driver in macOS.

Note 2 : While this option is usually needed to disable AppleIntelCpuPowerManagement on unsupported platforms,
it can also be used to disable this kext in other situations (e.g. with Cpuid1Data left blank).

4. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

5. MinKernel
Type: plist string
Failsafe: Empty string
Description: Emulates CPUID and applies DummyPowerManagement on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

7.6 Force Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext architecture (Any, i386, x86_64).

2. BundlePath
Type: plist string
Failsafe: Empty string
Description: Kext bundle path (e.g. System\Library \Extensions \IONetworkingFamily.kext).

28

https://github.com/acidanthera/bugtracker/issues/365

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel driver will not be added when not present unless set to true.

5. ExecutablePath
Type: plist string
Failsafe: Empty string
Description: Kext executable path relative to bundle (e.g. Contents/MacOS/IONetworkingFamily).

6. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext identifier to perform presence checking before adding (e.g. com.apple.iokit.IONetworkingFamily).
Only drivers which identifiers are not be found in the cache will be added.

7. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or older.

Note: Refer to Add Add MaxKernel description for matching logic.

8. MinKernel
Type: plist string
Failsafe: Empty string
Description: Adds kernel driver on specified macOS version or newer.

Note: Refer to Add Add MaxKernel description for matching logic.

9. PlistPath
Type: plist string
Failsafe: Empty string
Description: Kext Info.plist path relative to bundle (e.g. Contents/Info.plist).

7.7 Patch Properties
1. Arch

Type: plist string
Failsafe: Any
Description: Kext patch architecture (Any, i386, x86_64).

2. Base
Type: plist string
Failsafe: Empty string
Description: Selects symbol-matched base for patch lookup (or immediate replacement) by obtaining the address
of provided symbol name. Can be set to empty string to be ignored.

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Count
Type: plist integer

29

Failsafe: 0
Description: Number of patch occurrences to apply. 0 applies the patch to all occurrences found.

5. Enabled
Type: plist boolean
Failsafe: false
Description: This kernel patch will not be used unless set to true.

6. Find
Type: plist data
Failsafe: Empty data
Description: Data to find. Can be set to empty for immediate replacement at Base. Must equal to Replace in
size otherwise.

7. Identifier
Type: plist string
Failsafe: Empty string
Description: Kext bundle identifier (e.g. com.apple.driver.AppleHDA) or kernel for kernel patch.

8. Limit
Type: plist integer
Failsafe: 0
Description: Maximum number of bytes to search for. Can be set to 0 to look through the whole kext or kernel.

9. Mask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during find comparison. Allows fuzzy search by ignoring not masked (set
to zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

10. MaxKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or older.

Note: Refer to Add MaxKernel description for matching logic.

11. MinKernel
Type: plist string
Failsafe: Empty string
Description: Patches data on specified macOS version or newer.

Note: Refer to Add MaxKernel description for matching logic.

12. Replace
Type: plist data
Failsafe: Empty data
Description: Replacement data of one or more bytes.

13. ReplaceMask
Type: plist data
Failsafe: Empty data
Description: Data bitwise mask used during replacement. Allows fuzzy replacement by updating masked (set to
non-zero) bits. Can be set to empty data to be ignored. Must equal to Replace in size otherwise.

14. Skip
Type: plist integer
Failsafe: 0
Description: Number of found occurrences to be skipped before replacement is done.

7.8 Quirks Properties
1. AppleCpuPmCfgLock

Type: plist boolean

30

Failsafe: false
Requirement: 10.4
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in AppleIntelCPUPowerManage-
ment.kext, commonly causing early kernel panic, when it is locked from writing.

Some types of firmware lock the PKG_CST_CONFIG_CONTROL MSR register and the bundled VerifyMsrE2 tool can
be used to check its state. Note that some types of firmware only have this register locked on some cores.

As modern firmware provide a CFG Lock setting that allows configuring the PKG_CST_CONFIG_CONTROL MSR
register lock, this option should be avoided whenever possible. On APTIO firmware that do not provide a CFG
Lock setting in the GUI, it is possible to access the option directly:

(a) Download UEFITool and IFR-Extractor.
(b) Open the firmware image in UEFITool and find CFG Lock unicode string. If it is not present, the firmware

may not have this option and the process should therefore be discontinued.
(c) Extract the Setup.bin PE32 Image Section (the UEFITool found) through the Extract Body menu option.
(d) Run IFR-Extractor on the extracted file (e.g. ./ifrextract Setup.bin Setup.txt).
(e) Find CFG Lock, VarStoreInfo (VarOffset/VarName): in Setup.txt and remember the offset right after

it (e.g. 0x123).
(f) Download and run Modified GRUB Shell compiled by brainsucker or use a newer version by datasone.
(g) Enter setup_var 0x123 0x00 command, where 0x123 should be replaced by the actual offset, and reboot.

Warning: Variable offsets are unique not only to each motherboard but even to its firmware version. Never ever
try to use an offset without checking.

2. AppleXcpmCfgLock
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables PKG_CST_CONFIG_CONTROL (0xE2) MSR modification in XNU kernel, commonly causing
early kernel panic, when it is locked from writing (XCPM power management).

Note: This option should be avoided whenever possible. See AppleCpuPmCfgLock description for more details.

3. AppleXcpmExtraMsrs
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables multiple MSR access critical for select CPUs, which have no native XCPM support.

This is normally used in conjunction with Emulate section on Haswell-E, Broadwell-E, Skylake-SP, and similar
CPUs. More details on the XCPM patches are outlined in acidanthera/bugtracker#365.

Note: Additional not provided patches will be required for Ivy Bridge or Pentium CPUs. It is recommended to
use AppleIntelCpuPowerManagement.kext for the former.

4. AppleXcpmForceBoost
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Forces maximum performance in XCPM mode.

This patch writes 0xFF00 to MSR_IA32_PERF_CONTROL (0x199), effectively setting maximum multiplier for all the
time.

Note: While this may increase the performance, this patch is strongly discouraged on all systems but those
explicitly dedicated to scientific or media calculations. In general only certain Xeon models benefit from the
patch.

5. CustomSMBIOSGuid
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Performs GUID patching for UpdateSMBIOSMode Custom mode. Usually relevant for Dell laptops.

31

https://github.com/LongSoft/UEFITool/releases
https://github.com/LongSoft/Universal-IFR-Extractor/releases
http://brains.by/posts/bootx64.7z
https://geektimes.com/post/258090
https://github.com/datasone/grub-mod-setup_var
https://github.com/datasone
https://github.com/acidanthera/bugtracker/issues/365

6. DisableIoMapper
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break VT-d support in other systems in case they need it.

7. DisableLinkeditJettison
Type: plist boolean
Failsafe: false
Requirement: 11
Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext and possibly some others function in macOS Big Sur with best performance without
keepsyms=1 boot argument.

8. DisableRtcChecksum
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1 : This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2 : This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtcRam protocol description if this is desired.

9. ExtendBTFeatureFlags
Type: plist boolean
Failsafe: false
Requirement: 10.8
Description: Set FeatureFlags to 0x0F for full functionality of Bluetooth, including Continuity.

Note: This option is a substitution for BT4LEContinuityFixup.kext, which does not function properly due to late
patching progress.

10. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmware usually have compatible AHCI
controllers.

11. ForceSecureBootScheme
Type: plist boolean
Failsafe: false
Requirement: 11
Description: Force x86 scheme for IMG4 verification.

Note: This option is required on virtual machines when using SecureBootModel different from x86legacy.

12. IncreasePciBarSize
Type: plist boolean
Failsafe: false
Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

32

https://github.com/acidanthera/RTCMemoryFixup

13. LapicKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.6 (64-bit)
Description: Disables kernel panic on LAPIC interrupts.

14. LegacyCommpage
Type: plist boolean
Failsafe: false
Requirement: 10.4 - 10.6
Description: Replaces the default 64-bit commpage bcopy implementation with one that does not require
SSSE3, useful for legacy platforms. This prevents a commpage no match for last panic due to no available
64-bit bcopy functions that do not require SSSE3.

15. PanicNoKextDump
Type: plist boolean
Failsafe: false
Requirement: 10.13 (not required for older)
Description: Prevent kernel from printing kext dump in the panic log preventing from observing panic details.
Affects 10.13 and above.

16. PowerTimeoutKernelPanic
Type: plist boolean
Failsafe: false
Requirement: 10.15 (not required for older)
Description: Disables kernel panic on setPowerState timeout.

An additional security measure was added to macOS Catalina (10.15) causing kernel panic on power change
timeout for Apple drivers. Sometimes it may cause issues on misconfigured hardware, notably digital audio, which
sometimes fails to wake up. For debug kernels setpowerstate_panic=0 boot argument should be used, which is
otherwise equivalent to this quirk.

17. ThirdPartyDrives
Type: plist boolean
Failsafe: false
Requirement: 10.6 (not required for older)
Description: Apply vendor patches to IOAHCIBlockStorage.kext to enable native features for third-party drives,
such as TRIM on SSDs or hibernation support on 10.15 and newer.

Note: This option may be avoided on user preference. NVMe SSDs are compatible without the change. For AHCI
SSDs on modern macOS version there is a dedicated built-in utility called trimforce. Starting from 10.15 this
utility creates EnableTRIM variable in APPLE_BOOT_VARIABLE_GUID namespace with 01 00 00 00 value.

18. XhciPortLimit
Type: plist boolean
Failsafe: false
Requirement: 10.11 (not required for older)
Description: Patch various kexts (AppleUSBXHCI.kext, AppleUSBXHCIPCI.kext, IOUSBHostFamily.kext) to
remove USB port count limit of 15 ports.

Note: This option should be avoided whenever possible. USB port limit is imposed by the amount of used bits in
locationID format and there is no possible way to workaround this without heavy OS modification. The only valid
solution is to limit the amount of used ports to 15 (discarding some). More details can be found on AppleLife.ru.

7.9 Scheme Properties
These properties are particularly relevant for older macOS operating systems. For more details on how to install and
troubleshoot such macOS installation refer to Legacy Apple OS.

1. FuzzyMatch
Type: plist boolean

33

https://applelife.ru/posts/550233

Failsafe: false
Description: Use kernelcache with different checksums when available.

On macOS 10.6 and earlier kernelcache filename has a checksum, which essentially is adler32 from SMBIOS
product name and EfiBoot device path. On some types of firmware, the EfiBoot device path differs between
UEFI and macOS due to ACPI or hardware specifics, rendering kernelcache checksum as always different.

This setting allows matching the latest kernelcache with a suitable architecture when the kernelcache without
suffix is unavailable, improving macOS 10.6 boot performance on several platforms.

2. KernelArch
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel architecture (Auto, i386, i386-user32, x86_64) when available.

On macOS 10.7 and earlier XNU kernel can boot with architectures different from the usual x86_64. This setting
will use the specified architecture to boot macOS when it is supported by the macOS and the configuration:

• Auto — Choose the preferred architecture automatically.
• i386 — Use i386 (32-bit) kernel when available.
• i386-user32 — Use i386 (32-bit) kernel when available and force the use of 32-bit userspace on 64-bit

capable processors if supported by the operating system. On macOS 64-bit capable processors are assumed
to support SSSE3. This is not the case for older 64-bit capable Pentium processors, which cause some
applications to crash on macOS 10.6. This behaviour corresponds to -legacy kernel boot argument. This
option is unavailable for 10.4 and 10.5 when running on 64-bit firmware due to an uninitialised 64-bit segment
in the XNU kernel, which causes AppleEFIRuntime to incorrectly execute 64-bit code as 16-bit code.

• x86_64 — Use x86_64 (64-bit) kernel when available.

Below is the algorithm determining the kernel architecture.

(a) arch argument in image arguments (e.g. when launched via UEFI Shell) or in boot-args variable overrides
any compatibility checks and forces the specified architecture, completing this algorithm.

(b) OpenCore build architecture restricts capabilities to i386 and i386-user32 mode for the 32-bit firmware
variant.

(c) Determined EfiBoot version restricts architecture choice:
• 10.4-10.5 — i386 or i386-user32 (only on 32-bit firmware)
• 10.6 — i386, i386-user32, or x86_64
• 10.7 — i386 or x86_64
• 10.8 or newer — x86_64

(d) If KernelArch is set to Auto and SSSE3 is not supported by the CPU, capabilities are restricted to
i386-user32 if supported by EfiBoot.

(e) Board identifier (from SMBIOS) based on EfiBoot version disables x86_64 support on an unsupported model
if any i386 variant is supported. Auto is not consulted here as the list is not overridable in EfiBoot.

(f) KernelArch restricts the support to the explicitly specified architecture (when not set to Auto) if the
architecture remains present in the capabilities.

(g) The best supported architecture is chosen in this order: x86_64, i386, i386-user32.

Unlike macOS 10.7, where select boards identifiers are treated as the i386 only machines, and macOS 10.5 or
earlier, where x86_64 is not supported by the macOS kernel, macOS 10.6 is very special. The architecture choice
on macOS 10.6 depends on many factors including not only the board identifier, but also macOS product type
(client vs server), macOS point release, and RAM amount. The detection of them all is complicated and not
practical, because several point releases had genuine bugs and failed to properly perform the server detection
in the first place. For this reason OpenCore on macOS 10.6 will fallback to x86_64 architecture whenever it is
supported by the board at all, as on macOS 10.7. As a reference here is the 64-bit Mac model compatibility
corresponding to actual EfiBoot behaviour on macOS 10.6.8 and 10.7.5.

34

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported due to being handled by EfiBoot
and thus being hard to properly detect.

3. KernelCache
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance.
This setting prevents the use of faster kernel caching variants if slower variants are available for debugging and
stability reasons. I.e., by specifying Mkext, Prelinked will be disabled for e.g. 10.6 but not for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS i386 NC i386 MK i386 PK x86_64 NC x86_64 MK x86_64 PK x86_64 KC
10.4 YES YES (V1) NO (V1) — — — —
10.5 YES YES (V1) NO (V1) — — — —
10.6 YES YES (V2) YES (V2) YES YES (V2) YES (V2) —
10.7 YES — YES (V3) YES — YES (V3) —
10.8-10.9 — — — YES — YES (V3) —
10.10-10.15 — — — — — YES (V3) —
11+ — — — — — YES (V3) YES

Note: First version (V1) of 32-bit prelinkedkernel is unsupported due to kext symbol tables being corrupted
by the tools. On these versions Auto will block prelinkedkernel booting. This also makes keepsyms=1 for kext
frames broken on these systems.

35

8 Misc

8.1 Introduction
This section contains miscellaneous configuration affecting OpenCore operating system loading behaviour as well as
other entries, which do not go to any other section.

OpenCore tries to follow “bless” model also known as “Apple Boot Policy”. The primary specialty of “bless” model
is to allow embedding boot options within the file system (and be accessible through a specialised driver) as well
as supporting a broader range of predefined boot paths compared to the removable media list found in the UEFI
specification.

Each partition will only be used for booting when it corresponds to “Scan policy”: a set of restrictions to only use
partitions with specific file systems and from specific device types. Scan policy behaviour is discussed in ScanPolicy
property description.

Scan process starts with obtaining all the partitions filtered with “Scan policy”. Each partition may produce multiple
primary and alternate options. Primary options describe operating systems installed on this media. Alternate options
describe recovery options for the operating systems on the media. It is possible for alternate options to exist without
primary options and vice versa. Be warned that the options may not necessarily describe the operating systems on the
same partition. Each primary and alternate option can be an auxiliary option or not, refer to HideAuxiliary for more
details. Algorithm to determine boot options behaves as follows:

1. Obtain all available partition handles filtered by “Scan policy” (and driver availability).
2. Obtain all available boot options from BootOrder UEFI variable.
3. For each found boot option:

• Retrieve device path of the boot option.
• Perform fixups (e.g. NVMe subtype correction) and expansion (e.g. for Boot Camp) of the device path.
• Obtain device handle by locating device path of the resulting device path (ignore it on failure).
• Find device handle in the list of partition handles (ignore it if missing).
• For disk device paths (not specifying a bootloader) execute “bless” (may return > 1 entry).
• For file device paths check presence on the file system directly.
• On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
• Mark device handle as used in the list of partition handles if any.
• Register the resulting entries as primary options and determine their types.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
4. For each partition handle:

• If partition handle is marked as unused execute “bless” primary option list retrieval.
In case BlessOverride list is set, not only standard “bless” paths will be found but also custom ones.

• On OpenCore boot partition exclude all OpenCore bootstrap files by header checks.
• Register the resulting entries as primary options and determine their types if found.

The option will become auxiliary for some types (e.g. Apple HFS recovery).
• If partition already has primary options of “Apple Recovery” type proceed to next handle.
• Lookup alternate entries by “bless” recovery option list retrieval and predefined paths.
• Register the resulting entries as alternate auxiliary options and determine their types if found.

5. Custom entries and tools are added as primary options without any checks with respect to Auxiliary.
6. System entries (e.g. Reset NVRAM) are added as primary auxiliary options.

The display order of the boot options in the picker and the boot process are determined separately from the scanning
algorithm. The display order as follows:

• Alternate options follow corresponding primary options, i.e. Apple recovery will be following the relevant macOS
option whenever possible.

• Options will be listed in file system handle firmware order to maintain an established order across the reboots
regardless of the chosen operating system for loading.

• Custom entries, tools, and system entries will be added after all other options.
• Auxiliary options will only show upon entering “Advanced Mode” in the picker (usually by pressing “Space”).

The boot process is as follows:

• Try looking up first valid primary option through BootNext UEFI variable.
• On failure looking up first valid primary option through BootOrder UEFI variable.

36

• Mark the option as the default option to boot.
• Boot option through the picker or without it depending on the ShowPicker option.
• Show picker on failure otherwise.

Note 1 : This process is meant to work reliably only when RequestBootVarRouting option is enabled or the firmware
does not control UEFI boot options (OpenDuetPkg or custom BDS). Without BootProtect it also is possible that other
operating systems overwrite OpenCore, make sure to enable it when planning to use them.

Note 2 : UEFI variable boot options’ boot arguments will be removed if present as they may contain arguments
compromising the operating system, which is undesired once secure boot is enabled.

Note 3 : Some operating systems, namely Windows, will create their boot option and mark it as top most upon first
boot or after NVRAM Reset. When this happens default boot entry choice will update till next manual reconfiguration.

8.2 Properties
1. Boot

Type: plist dict
Description: Apply boot configuration described in Boot Properties section below.

2. BlessOverride
Type: plist array
Description: Add custom scanning paths through bless model.

Designed to be filled with plist string entries containing absolute UEFI paths to customised bootloaders,
for example, \EFI\debian\grubx64.efi for Debian bootloader. This allows unusual boot paths to be au-
tomatically discovered by the boot picker. Designwise they are equivalent to predefined blessed path, such
as \System\Library\CoreServices\boot.efi or \EFI\Microsoft\Boot\bootmgfw.efi, but unlike predefined
bless paths they have highest priority.

3. Debug
Type: plist dict
Description: Apply debug configuration described in Debug Properties section below.

4. Entries
Type: plist array
Description: Add boot entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

5. Security
Type: plist dict
Description: Apply security configuration described in Security Properties section below.

6. Tools
Type: plist array
Description: Add tool entries to boot picker.

Designed to be filled with plist dict values, describing each load entry. See Entry Properties section below.

Note: Select tools, for example, UEFI Shell, are very dangerous and MUST NOT appear in production
configurations, especially in vaulted ones and protected with secure boot, as they may be used to easily bypass
secure boot chain. For tool examples check the UEFI section of this document.

8.3 Boot Properties
1. ConsoleAttributes

Type: plist integer
Failsafe: 0
Description: Sets specific attributes for console.

Text renderer supports colour arguments as a sum of foreground and background colours according to UEFI
specification. The value of black background and black foreground (0) is reserved. List of colour names:

• 0x00 — EFI_BLACK

37

• 0x01 — EFI_BLUE
• 0x02 — EFI_GREEN
• 0x03 — EFI_CYAN
• 0x04 — EFI_RED
• 0x05 — EFI_MAGENTA
• 0x06 — EFI_BROWN
• 0x07 — EFI_LIGHTGRAY
• 0x08 — EFI_DARKGRAY
• 0x09 — EFI_LIGHTBLUE
• 0x0A — EFI_LIGHTGREEN
• 0x0B — EFI_LIGHTCYAN
• 0x0C — EFI_LIGHTRED
• 0x0D — EFI_LIGHTMAGENTA
• 0x0E — EFI_YELLOW
• 0x0F — EFI_WHITE
• 0x00 — EFI_BACKGROUND_BLACK
• 0x10 — EFI_BACKGROUND_BLUE
• 0x20 — EFI_BACKGROUND_GREEN
• 0x30 — EFI_BACKGROUND_CYAN
• 0x40 — EFI_BACKGROUND_RED
• 0x50 — EFI_BACKGROUND_MAGENTA
• 0x60 — EFI_BACKGROUND_BROWN
• 0x70 — EFI_BACKGROUND_LIGHTGRAY

Note: This option may not work well with System text renderer. Setting a background different from black could
help testing proper GOP functioning.

2. HibernateMode
Type: plist string
Failsafe: None
Description: Hibernation detection mode. The following modes are supported:

• None — Avoid hibernation (Recommended).
• Auto — Use RTC and NVRAM detection.
• RTC — Use RTC detection.
• NVRAM — Use NVRAM detection.

3. HideAuxiliary
Type: plist boolean
Failsafe: false
Description: Hides auxiliary entries from picker menu by default.

An entry is considered auxiliary when at least one of the following applies:

• Entry is macOS recovery.
• Entry is macOS Time Machine.
• Entry is explicitly marked as Auxiliary.
• Entry is system (e.g. Reset NVRAM).

To see all entries picker menu needs to be reloaded in extended mode by pressing Spacebar key. Hiding auxiliary
entries may increase boot performance for multidisk systems.

4. PickerAttributes
Type: plist integer
Failsafe: 0
Description: Sets specific attributes for picker.

Different pickers may be configured through the attribute mask containing OpenCore-reserved (BIT0~BIT15) and
OEM-specific (BIT16~BIT31) values.

Current OpenCore values include:

• 0x0001 — OC_ATTR_USE_VOLUME_ICON, provides custom icons for boot entries:

38

For Tools OpenCore will try to load a custom icon and fallback to the default icon:
– ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM.icns from icons directory.
– Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot Entries OpenCore will try to load a custom icon and fallback to the volume icon or the
default icon:
– <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entries OpenCore will try to load a volume icon and fallback to the default icon:
– .VolumeIcon.icns file at Preboot volume directory for APFS (if present).
– .VolumeIcon.icns file at Preboot root for APFS (otherwise).
– .VolumeIcon.icns file at volume root for other filesystems.

Volume icons can be set in Finder. Note, that enabling this may result in external and internal icons to be
indistinguishable.

• 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
– .disk_label (.disk_label_2x) file near bootloader for all filesystems.
– <TOOL_NAME>.lbl (<TOOL_NAME>.l2x) file near tool for Tools.

Prerendered labels can be generated via disklabel utility or bless command. When disabled or missing
text labels (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

• 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. May give less detail for the actual boot entry.

• 0x0008 — OC_ATTR_USE_ALTERNATE_ICONS, changes used icon set to an alternate one if it is supported. For
example, this could make a use of old-style icons with a custom background colour.

• 0x0010 — OC_ATTR_USE_POINTER_CONTROL, enable pointer control in the picker when available. For example,
this could make use of mouse or trackpad to control UI elements.

5. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in boot picker.

For macOS bootloader screen reader preference is set in preferences.efires archive in isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support this option is an independent
equivalent. Toggling screen reader support in both OpenCore boot picker and macOS bootloader FileVault 2
login window can also be done with Command + F5 key combination.

Note: screen reader requires working audio support, see UEFI Audio Properties section for more details.

6. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in boot picker.

In addition to action hotkeys, which are partially described in PickerMode section and are normally handled
by Apple BDS, there exist modifier keys, which are handled by operating system bootloader, namely boot.efi.
These keys allow to change operating system behaviour by providing different boot modes.

On some types of firmware, it may be problematic to use modifier keys due to driver incompatibilities. To
workaround this problem this option allows registering select hotkeys in a more permissive manner from within
boot picker. Such extensions include the support of tapping on keys in addition to holding and pressing Shift
along with other keys instead of just Shift alone, which is not detectable on many PS/2 keyboards. This list of
known modifier hotkeys includes:

• CMD+C+MINUS — disable board compatibility checking.
• CMD+K — boot release kernel, similar to kcsuffix=release.
• CMD+S — single user mode.
• CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
• CMD+V — verbose mode.
• Shift — safe mode.

7. ShowPicker
Type: plist boolean

39

Failsafe: false
Description: Show simple boot picker to allow boot entry selection.

8. TakeoffDelay
Type: plist integer, 32 bit
Failsafe: 0
Description: Delay in microseconds performed before handling picker startup and action hotkeys.

Introducing a delay may give extra time to hold the right action hotkey sequence to e.g. boot to recovery mode.
On some platforms setting this option to at least 5000-10000 microseconds may be necessary to access action
hotkeys at all due to the nature of the keyboard driver.

9. Timeout
Type: plist integer, 32 bit
Failsafe: 0
Description: Timeout in seconds in boot picker before automatic booting of the default boot entry. Use 0 to
disable timer.

10. PickerMode
Type: plist string
Failsafe: Builtin
Description: Choose boot picker used for boot management.

Picker describes underlying boot management with an optional user interface responsible for handling boot
options. The following values are supported:

• Builtin — boot management is handled by OpenCore, a simple text only user interface is used.
• External — an external boot management protocol is used if available. Otherwise Builtin mode is used.
• Apple — Apple boot management is used if available. Otherwise Builtin mode is used.

Upon success External mode will entirely disable all boot management in OpenCore except policy enforcement.
In Apple mode it may additionally bypass policy enforcement. See OpenCanopy plugin for an example of a
custom user interface.

OpenCore built-in boot picker contains a set of actions chosen during the boot process. The list of supported
actions is similar to Apple BDS and in general can be accessed by holding action hotkeys during boot process.
Currently the following actions are considered:

• Default — this is the default option, and it lets OpenCore built-in boot picker to loads the default boot
option as specified in Startup Disk preference pane.

• ShowPicker — this option forces picker to show. Normally it can be achieved by holding OPT key during
boot. Setting ShowPicker to true will make ShowPicker the default option.

• ResetNvram — this option performs select UEFI variable erase and is normally achieved by holding
CMD+OPT+P+R key combination during boot. Another way to erase UEFI variables is to choose Reset NVRAM
in the picker. This option requires AllowNvramReset to be set to true.

• BootApple — this options performs booting to the first found Apple operating system unless the default
chosen operating system is already made by Apple. Hold X key to choose this option.

• BootAppleRecovery — this option performs booting to Apple operating system recovery. Either the one
related to the default chosen operating system, or first found in case default chosen operating system is not
made by Apple or has no recovery. Hold CMD+R key combination to choose this option.

Note 1 : Activated KeySupport, OpenUsbKbDxe, or similar driver is required for key handling to work. On several
types of firmware, it is not possible to get all the key functions.

Note 2 : In addition to OPT OpenCore supports Escape key to display picker when ShowPicker is disabled. This
key exists for the Apple picker mode and for firmware with PS/2 keyboards that fail to report held OPT keys and
requiring continual presses of the Escape key to access the boot menu.

Note 3 : On Macs with problematic GOP, it may be difficult to access the Apple BootPicker. The BootKicker
utility can be blessed to workaround this problem even without loading OpenCore. On some Macs however, the
BootKicker utility cannot be run from OpenCore.

40

https://support.apple.com/HT202796

8.4 Debug Properties
1. AppleDebug

Type: plist boolean
Failsafe: false
Description: Enable boot.efi debug log saving to OpenCore log.

Note: This option only applies to 10.15.4 and newer.

2. ApplePanic
Type: plist boolean
Failsafe: false
Description: Save macOS kernel panic to OpenCore root partition.

The file is saved as panic-YYYY-MM-DD-HHMMSS.txt. It is strongly recommended to have keepsyms=1 boot
argument to see debug symbols in the panic log. In case it was not present kpdescribe.sh utility (bundled with
OpenCore) may be used to partially recover the stacktrace.

Development and debug kernels produce more helpful kernel panics. Consider downloading and installing
KernelDebugKit from developer.apple.com when debugging a problem. To activate a development kernel the
boot argument kcsuffix=development should be added. Use uname -a command to ensure that the current
loaded kernel is a development (or a debug) kernel.

In case OpenCore kernel panic saving mechanism was not used, kernel panics may still be found in
/Library/Logs/DiagnosticReports directory. Starting with macOS Catalina kernel panics are stored in JSON
format, so they need to be preprocessed before passing to kpdescribe.sh:

cat Kernel.panic | grep macOSProcessedStackshotData |
python -c 'import json,sys;print(json.load(sys.stdin)["macOSPanicString"])'

3. DisableWatchDog
Type: plist boolean
Failsafe: false
Description: Some types of firmware may not succeed in booting the operating system quickly, especially in
debug mode, which results in the watchdog timer aborting the process. This option turns off the watchdog timer.

4. DisplayDelay
Type: plist integer
Failsafe: 0
Description: Delay in microseconds performed after every printed line visible onscreen (i.e. console).

5. DisplayLevel
Type: plist integer, 64 bit
Failsafe: 0
Description: EDK II debug level bitmask (sum) showed onscreen. Unless Target enables console (onscreen)
printing, onscreen debug output will not be visible. The following levels are supported (discover more in
DebugLib.h):

• 0x00000002 (bit 1) — DEBUG_WARN in DEBUG, NOOPT, RELEASE.
• 0x00000040 (bit 6) — DEBUG_INFO in DEBUG, NOOPT.
• 0x00400000 (bit 22) — DEBUG_VERBOSE in custom builds.
• 0x80000000 (bit 31) — DEBUG_ERROR in DEBUG, NOOPT, RELEASE.

6. SerialInit
Type: plist boolean
Failsafe: false
Description: Perform serial port initialisation.

This option will perform serial port initialisation within OpenCore prior to enabling (any) debug logging. Serial
port configuration is defined via PCDs at compile time in gEfiMdeModulePkgTokenSpaceGuid GUID. Default
values as found in MdeModulePkg.dec are as follows:

• PcdSerialBaudRate — Baud rate: 115200.
• PcdSerialLineControl — Line control: no parity, 8 data bits, 1 stop bit.

41

https://developer.apple.com
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/Library/DebugLib.h

See more details in Debugging section.

7. SysReport
Type: plist boolean
Failsafe: false
Description: Produce system report on ESP folder.

This option will create a SysReport directory on ESP partition unless it is already present. The directory will
contain ACPI and SMBIOS dumps.

Note: For security reasons SysReport option is not available in RELEASE builds. Use a DEBUG build if this option
is needed.

8. Target
Type: plist integer
Failsafe: 0
Description: A bitmask (sum) of enabled logging targets. By default all the logging output is hidden, so this
option is required to be set when debugging is necessary.

The following logging targets are supported:

• 0x01 (bit 0) — Enable logging, otherwise all log is discarded.
• 0x02 (bit 1) — Enable basic console (onscreen) logging.
• 0x04 (bit 2) — Enable logging to Data Hub.
• 0x08 (bit 3) — Enable serial port logging.
• 0x10 (bit 4) — Enable UEFI variable logging.
• 0x20 (bit 5) — Enable non-volatile UEFI variable logging.
• 0x40 (bit 6) — Enable logging to file.

Console logging prints less than all the other variants. Depending on the build type (RELEASE, DEBUG, or NOOPT)
different amount of logging may be read (from least to most).

Data Hub log will not log kernel and kext patches. To obtain Data Hub log use the following command in macOS:

ioreg -lw0 -p IODeviceTree | grep boot-log | sort | sed 's/.*<\(.*\)>.*/\1/' | xxd -r -p

UEFI variable log does not include some messages and has no performance data. For safety reasons log size is
limited to 32 kilobytes. Some types of firmware may truncate it much earlier or drop completely if they have no
memory. Using non-volatile flag will write the log to NVRAM flash after every printed line. To obtain UEFI
variable log use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-log |
awk '{gsub(/%0d%0a%00/,"");gsub(/%0d%0a/,"\n")}1'

Warning: Some types of firmware appear to have flawed NVRAM garbage collection. This means that they may
not be able to always free space after variable deletion. Do not use non-volatile NVRAM logging without extra
need on such devices.

While OpenCore boot log already contains basic version information with build type and date, this data may also
be found in NVRAM in opencore-version variable even with boot log disabled.

File logging will create a file named opencore-YYYY-MM-DD-HHMMSS.txt at EFI volume root with log contents
(the upper case letter sequence is replaced with date and time from the firmware). Please be warned that some
file system drivers present in firmware are not reliable and may corrupt data when writing files through UEFI.
Log writing is attempted in the safest manner and thus, is very slow. Ensure that DisableWatchDog is set to
true when a slow drive is used. Try to avoid frequent use of this option when dealing with flash drives as large
I/O amounts may speedup memory wear and render the flash drive unusable quicker.

When interpreting the log, note that the lines are prefixed with a tag describing the relevant location (module) of
the log line allowing better attribution of the line to the functionality. The list of currently used tags is provided
below.

Drivers and tools:

• BMF — OpenCanopy, bitmap font

42

• BS — Bootstrap
• GSTT — GoptStop
• HDA — AudioDxe
• KKT — KeyTester
• MMDD — MmapDump
• OCPAVP — PavpProvision
• OCRST — ResetSystem
• OCUI — OpenCanopy
• OC — OpenCore main
• VMOPT — VerifyMemOpt

Libraries:

• AAPL — OcDebugLogLib, Apple EfiBoot logging
• OCABC — OcAfterBootCompatLib
• OCAE — OcAppleEventLib
• OCAK — OcAppleKernelLib
• OCAU — OcAudioLib
• OCAV — OcAppleImageVerificationLib
• OCA —- OcAcpiLib
• OCBP — OcAppleBootPolicyLib
• OCB — OcBootManagementLib
• OCCL — OcAppleChunkListLib
• OCCPU — OcCpuLib
• OCC — OcConsoleLib
• OCDC — OcDriverConnectionLib
• OCDH — OcDataHubLib
• OCDI — OcAppleDiskImageLib
• OCFS — OcFileLib
• OCFV — OcFirmwareVolumeLib
• OCHS — OcHashServicesLib
• OCI4 — OcAppleImg4Lib
• OCIC — OcImageConversionLib
• OCII — OcInputLib
• OCJS — OcApfsLib
• OCKM — OcAppleKeyMapLib
• OCL — OcDebugLogLib
• OCMCO — OcMachoLib
• OCME — OcHeciLib
• OCMM — OcMemoryLib
• OCPI — OcFileLib, partition info
• OCPNG — OcPngLib
• OCRAM — OcAppleRamDiskLib
• OCRTC — OcRtcLib
• OCSB — OcAppleSecureBootLib
• OCSMB — OcSmbiosLib
• OCSMC — OcSmcLib
• OCST — OcStorageLib
• OCS — OcSerializedLib
• OCTPL — OcTemplateLib
• OCUC — OcUnicodeCollationLib
• OCUT — OcAppleUserInterfaceThemeLib
• OCXML — OcXmlLib

8.5 Security Properties
1. AllowNvramReset

Type: plist boolean
Failsafe: false

43

Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. ApECID
Type: plist integer, 64 bit
Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, make sure to generate a random 64-bit number with a cryptographically secure random number
generator. As an alternative, first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11 for
Macs without the T2 chip.

With this value set and SecureBootModel valid and not Disabled it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system will have to be reinstalled or personalised.
Unless the operating system is personalised, macOS DMG recovery cannot be loaded. If DMG recovery is missing,
it can be downloaded with macrecovery utility and put to com.apple.recovery.boot as explained in Tips and
Tricks section. Note that DMG loading needs to be set to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

Before macOS 11, which introduced a dedicated x86legacy model for models without the T2 chip, personalised
Apple Secure Boot may not work as expected. When reinstalling the operating system, macOS Installer from
macOS 10.15 and older, will usually run out of free memory on the /var/tmp partition when trying to install
macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable
to verify macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs
for macOS personalisation by entering the following commands in macOS recovery terminal before starting the
installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5. BlacklistAppleUpdate
Type: plist boolean

44

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

Failsafe: false
Description: Ignore boot options trying to update Apple peripheral firmware (e.g. MultiUpdater.efi).

Note: This option exists due to some operating systems, namely macOS Big Sur, being incapable of disabling
firmware updates with the NVRAM variable (run-efi-updater).

6. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

• None — do nothing.
• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option in UEFI

variable storage at bootloader startup. For this option to work RequestBootVarRouting is required to be
enabled.

• BootstrapShort — create a short boot option instead of a complete one, otherwise equivalent to Bootstrap.
This variant is useful for some older firmwares, Insyde in particular, but possibly others, which cannot handle
full device paths.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstrapping OpenCore.

Note 1 : Some types of firmware may have faulty NVRAM, no boot option support, or other incompatibilities.
While unlikely, the use of this option may even cause boot failures. This option should be used without any
warranty exclusively on the boards known to be compatible. Check acidanthera/bugtracker#1222 for some known
issues with Haswell and other boards.

Note 2 : Be aware that while NVRAM reset executed from OpenCore should not erase the boot option created in
Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it. For significant implementation
updates (e.g. in OpenCore 0.6.4) make sure to perform NVRAM reset with Bootstrap disabled before reenabling.

7. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot.efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

• Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and will
cause a boot failure when Apple Secure Boot is activated.

8. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

9. ExposeSensitiveData
Type: plist integer

45

https://github.com/acidanthera/bugtracker/issues/1255
https://github.com/acidanthera/bugtracker/issues/1222

Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.
• 0x04 — Expose OpenCore version in boot picker menu title.
• 0x08 — Expose OEM information as a set of UEFI variables.

Exposed booter path points to OpenCore.efi or its booter depending on the load order. To obtain booter path
use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path

To use booter path for mounting booter volume use the following command in macOS:

u=$(nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:boot-path | sed 's/.*GPT,\([^,]*\),.*/\1/'); \
if ["$u" != ""]; then sudo diskutil mount $u ; fi

To obtain OpenCore version use the following command in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:opencore-version

To obtain OEM information use the following commands in macOS:

nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-product # SMBIOS Type1 ProductName
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-vendor # SMBIOS Type2 Manufacturer
nvram 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:oem-board # SMBIOS Type2 ProductName

10. HaltLevel
Type: plist integer, 64 bit
Failsafe: 0x80000000 (DEBUG_ERROR)
Description: EDK II debug level bitmask (sum) causing CPU to halt (stop execution) after obtaining a message
of HaltLevel. Possible values match DisplayLevel values.

11. PasswordHash
Type: plist data 64 bytes
Failsafe: all zero
Description: Password hash used when EnabledPassword is set.

12. PasswordSalt
Type: plist data
Failsafe: empty
Description: Password salt used when EnabledPassword is set.

13. Vault
Type: plist string
Failsafe: Secure
Description: Enables vaulting mechanism in OpenCore.

Valid values:

• Optional — require nothing, no vault is enforced, insecure.
• Basic — require vault.plist file present in OC directory. This provides basic filesystem integrity verification

and may protect from unintentional filesystem corruption.
• Secure — require vault.sig signature file for vault.plist in OC directory. This includes Basic integrity

checking but also attempts to build a trusted bootchain.

vault.plist file should contain SHA-256 hashes for all files used by OpenCore. Presence of this file is highly
recommended to ensure that unintentional file modifications (including filesystem corruption) do not happen
unnoticed. To create this file automatically use create_vault.sh script. Regardless of the underlying filesystem,
path name and case must match between config.plist and vault.plist.

46

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault

vault.sig file should contain a raw 256 byte RSA-2048 signature from SHA-256 hash of vault.plist. The
signature is verified against the public key embedded into OpenCore.efi. To embed the public key either of the
following should be performed:

• Provide public key during the OpenCore.efi compilation in OpenCoreVault.c file.
• Binary patch OpenCore.efi replacing zeroes with the public key between =BEGIN OC VAULT= and ==END

OC VAULT== ASCII markers.

RSA public key 520 byte format description can be found in Chromium OS documentation. To convert public
key from X.509 certificate or from PEM file use RsaTool.

The complete set of commands to:

• Create vault.plist.
• Create a new RSA key (always do this to avoid loading old configuration).
• Embed RSA key into OpenCore.efi.
• Create vault.sig.

Can look as follows:

cd /Volumes/EFI/EFI/OC
/path/to/create_vault.sh .
/path/to/RsaTool -sign vault.plist vault.sig vault.pub
off=$(($(strings -a -t d OpenCore.efi | grep "=BEGIN OC VAULT=" | cut -f1 -d' ')+16))
dd of=OpenCore.efi if=vault.pub bs=1 seek=$off count=528 conv=notrunc
rm vault.pub

Note 1 : While it may appear obvious, an external method is required to verify OpenCore.efi and BOOTx64.efi
for secure boot path. For this, it is recommended to enable UEFI SecureBoot using a custom certificate and to
sign OpenCore.efi and BOOTx64.efi with a custom key. More details on customising secure boot on modern
firmware can be found in Taming UEFI SecureBoot paper (in Russian).

Note 2 : vault.plist and vault.sig are used regardless of this option when vault.plist is present or public
key is embedded into OpenCore.efi. Setting this option will only ensure configuration sanity, and abort the boot
process otherwise.

14. ScanPolicy
Type: plist integer, 32 bit
Failsafe: 0x10F0103
Description: Define operating system detection policy.

This value allows to prevent scanning (and booting) from untrusted source based on a bitmask (sum) of select
flags. As it is not possible to reliably detect every file system or device type, this feature cannot be fully relied
upon in open environments, and the additional measures are to be applied.

Third party drivers may introduce additional security (and performance) measures following the provided scan
policy. Scan policy is exposed in scan-policy variable of 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 GUID for
UEFI Boot Services only.

• 0x00000001 (bit 0) — OC_SCAN_FILE_SYSTEM_LOCK, restricts scanning to only known file systems defined as
a part of this policy. File system drivers may not be aware of this policy, and to avoid mounting of undesired
file systems it is best not to load its driver. This bit does not affect dmg mounting, which may have any file
system. Known file systems are prefixed with OC_SCAN_ALLOW_FS_.

• 0x00000002 (bit 1) — OC_SCAN_DEVICE_LOCK, restricts scanning to only known device types defined as a
part of this policy. This is not always possible to detect protocol tunneling, so be aware that on some
systems it may be possible for e.g. USB HDDs to be recognised as SATA. Cases like this must be reported.
Known device types are prefixed with OC_SCAN_ALLOW_DEVICE_.

• 0x00000100 (bit 8) — OC_SCAN_ALLOW_FS_APFS, allows scanning of APFS file system.
• 0x00000200 (bit 9) — OC_SCAN_ALLOW_FS_HFS, allows scanning of HFS file system.
• 0x00000400 (bit 10) — OC_SCAN_ALLOW_FS_ESP, allows scanning of EFI System Partition file system.
• 0x00000800 (bit 11) — OC_SCAN_ALLOW_FS_NTFS, allows scanning of NTFS (Msft Basic Data) file system.
• 0x00001000 (bit 12) — OC_SCAN_ALLOW_FS_EXT, allows scanning of EXT (Linux Root) file system.
• 0x00010000 (bit 16) — OC_SCAN_ALLOW_DEVICE_SATA, allow scanning SATA devices.

47

https://github.com/acidanthera/OpenCorePkg/blob/master/Platform/OpenCore/OpenCoreVault.c
https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/CreateVault
https://habr.com/post/273497/

• 0x00020000 (bit 17) — OC_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
• 0x00040000 (bit 18) — OC_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.
• 0x00080000 (bit 19) — OC_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.
• 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices and old SATA.
• 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.
• 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
• 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.
• 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus

(e.g. VIRTIO).

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

• OC_SCAN_FILE_SYSTEM_LOCK
• OC_SCAN_DEVICE_LOCK
• OC_SCAN_ALLOW_FS_APFS
• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

15. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot. Valid values:

• Default — Recent available model, currently set to j137.
• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017). Minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018). Minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018). Minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018). Minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019). Minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019). Minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019). Minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019). Minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020). Minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020). Minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020). Minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020). Minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020). Minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020). Minimum macOS 10.15.6 (19G2005)
• x86legacy — Macs without T2 chip and VMs. Minimum macOS 11.0.1 (20B29)

Apple Secure Boot appeared in macOS 10.13 on models with T2 chips. Since PlatformInfo and SecureBootModel
are independent, Apple Secure Boot can be used with any SMBIOS with and without T2. Setting SecureBootModel
to any valid value but Disabled is equivalent to Medium Security of Apple Secure Boot. The ApECID value must
also be specified to achieve Full Security. Check ForceSecureBootScheme when using Apple Secure Boot on
a virtual machine.

Enabling Apple Secure Boot is more demanding to incorrect configurations, buggy macOS installations, and
unsupported setups. Things to consider:

(a) As with T2 Macs, unsigned kernel drivers and several signed kernel drivers, including NVIDIA Web Drivers,
cannot be installed.

48

https://support.apple.com/en-us/HT208330

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced kernel
drivers. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, such as macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless Apple Secure Boot is
disabled.

(d) If the platform requires certain settings, but they were not enabled, because the obvious issues did not
trigger before, boot failure might occur. Be extra careful with IgnoreInvalidFlexRatio or HashServices.

(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot
until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware as Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

(h) Installing macOS with Apple Secure Boot enabled is not possible while using HFS+ target volume. This
may include HFS+ formatted drives when no spare APFS drive is available.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If there is “OCB: Apple Secure Boot prohibits this boot entry, en-
forcing!” message, it is likely the case. When this happens, either reinstall the operating system or copy
the manifests (files with .im4m extension, such as boot.efi.j137.im4m) from /usr/standalone/i386 to
/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is the system volume identifier. On
HFS+ installations the manifests should be copied to /System/Library/CoreServices on the system volume.

For more details on how to configure Apple Secure Boot with UEFI Secure Boot refer to UEFI Secure Boot
section.

8.6 Entry Properties
1. Arguments

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Auxiliary
Type: plist boolean
Failsafe: false
Description: This entry will not be listed by default when HideAuxiliary is set to true.

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This entry will not be listed unless set to true.

5. Name
Type: plist string
Failsafe: Empty string
Description: Human readable entry name displayed in boot picker.

6. Path
Type: plist string
Failsafe: Empty string
Description: Entry location depending on entry type.

• Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot(0x0)/Pci(0x1,0x1)/.../\EFI\COOL.EFI

49

• Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to OC/Tools directory. Example: OpenShell.efi.

7. RealPath
Type: plist boolean
Failsafe: false
Description: Pass full path to the tool when launching.

Passing tool directory may be unsafe for tool accidentally trying to access files without checking their integrity
and thus should generally be disabled. Reason to enable this property may include cases where tools cannot work
without external files or may need them for better function (e.g. memtest86 for logging and configuration or
Shell for automatic script execution).

Note: This property is only valid for Tools. For Entries this property cannot be specified and is always true.

8. TextMode
Type: plist boolean
Failsafe: false
Description: Run the entry in text mode instead of graphics mode.

This setting may be benefitial to some older tools that require text output. By default all the tools are launched
in graphics mode. Read more about text modes in Output Properties section below.

50

9 NVRAM

9.1 Introduction
Has plist dict type and allows to set volatile UEFI variables commonly referred as NVRAM variables. Refer
to man nvram for more details. macOS extensively uses NVRAM variables for OS — Bootloader — Firmware
intercommunication, and thus supplying several NVRAM is required for proper macOS functioning.

Each NVRAM variable consists of its name, value, attributes (refer to UEFI specification), and its GUID, representing
which ‘section’ NVRAM variable belongs to. macOS uses several GUIDs, including but not limited to:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14 (APPLE_VENDOR_VARIABLE_GUID)
• 7C436110-AB2A-4BBB-A880-FE41995C9F82 (APPLE_BOOT_VARIABLE_GUID)
• 8BE4DF61-93CA-11D2-AA0D-00E098032B8C (EFI_GLOBAL_VARIABLE_GUID)
• 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102 (OC_VENDOR_VARIABLE_GUID)

Note: Some of the variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Please
ensure that variables of this section never collide with them, as behaviour is undefined otherwise.

For proper macOS functioning it is often required to use OC_FIRMWARE_RUNTIME protocol implementation currently
offered as a part of OpenRuntime driver. While it brings any benefits, there are certain limitations which arise depending
on the use.

1. Not all tools may be aware of protected namespaces.
When RequestBootVarRouting is used Boot-prefixed variable access is restricted and protected in a separate
namespace. To access the original variables tools have to be aware of OC_FIRMWARE_RUNTIME logic.

9.2 Properties
1. Add

Type: plist dict
Description: Sets NVRAM variables from a map (plist dict) of GUIDs to a map (plist dict) of variable
names and their values in plist metadata format. GUIDs must be provided in canonic string format in upper
or lower case (e.g. 8BE4DF61-93CA-11D2-AA0D-00E098032B8C).

Created variables get EFI_VARIABLE_BOOTSERVICE_ACCESS and EFI_VARIABLE_RUNTIME_ACCESS attributes set.
Variables will only be set if not present or deleted. I.e. to overwrite an existing variable value add the variable
name to the Delete section. This approach enables to provide default values till the operating system takes the
lead.

Note: If plist key does not conform to GUID format, behaviour is undefined.

2. Delete
Type: plist dict
Description: Removes NVRAM variables from a map (plist dict) of GUIDs to an array (plist array) of
variable names in plist string format.

3. LegacyEnable
Type: plist boolean
Failsafe: false
Description: Enables loading of NVRAM variable file named nvram.plist from EFI volume root.

This file must have root plist dictionary type and contain two fields:

• Version — plist integer, file version, must be set to 1.
• Add — plist dictionary, equivalent to Add from config.plist.

Variable loading happens prior to Delete (and Add) phases. Unless LegacyOverwrite is enabled, it will not
overwrite any existing variable. Variables allowed to be set must be specified in LegacySchema. Third-party
scripts may be used to create nvram.plist file. An example of such script can be found in Utilities. The use of
third-party scripts may require ExposeSensitiveData set to 0x3 to provide boot-path variable with OpenCore
EFI partition UUID.

51

https://en.wikipedia.org/wiki/Universally_unique_identifier

Warning: This feature is very dangerous as it passes unprotected data to firmware variable services. Use it only
when no hardware NVRAM implementation is provided by the firmware or it is incompatible.

4. LegacyOverwrite
Type: plist boolean
Failsafe: false
Description: Permits overwriting firmware variables from nvram.plist.

Note: Only variables accessible from the operating system will be overwritten.

5. LegacySchema
Type: plist dict
Description: Allows setting select NVRAM variables from a map (plist dict) of GUIDs to an array (plist
array) of variable names in plist string format.

* value can be used to accept all variables for select GUID.

WARNING: Choose variables very carefully, as nvram.plist is not vaulted. For instance, do not put boot-args
or csr-active-config, as this can bypass SIP.

6. WriteFlash
Type: plist boolean
Failsafe: false
Description: Enables writing to flash memory for all added variables.

Note: It is recommended to have this value enabled on most types of firmware but it is left configurable for
firmware that may have issues with NVRAM variable storage garbage collection or similar.

To read NVRAM variable value from macOS, nvram could be used by concatenating GUID and name variables separated
by a : symbol. For example, nvram 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args.

A continuously updated variable list can be found in a corresponding document: NVRAM Variables.

9.3 Mandatory Variables
Warning: These variables may be added by PlatformNVRAM or Generic subsections of PlatformInfo section. Using
PlatformInfo is the recommend way of setting these variables.

The following variables are mandatory for macOS functioning:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
32-bit FirmwareFeatures. Present on all Macs to avoid extra parsing of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
32-bit FirmwareFeaturesMask. Present on all Macs to avoid extra parsing of SMBIOS tables.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB
BoardSerialNumber. Present on newer Macs (2013+ at least) to avoid extra parsing of SMBIOS tables, especially
in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM
Primary network adapter MAC address or replacement value. Present on newer Macs (2013+ at least) to
avoid accessing special memory region, especially in boot.efi.

9.4 Recommended Variables
The following variables are recommended for faster startup or other improvements:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:csr-active-config
32-bit System Integrity Protection bitmask. Declared in XNU source code in csr.h.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures
Combined FirmwareFeatures and ExtendedFirmwareFeatures. Present on newer Macs to avoid extra parsing
of SMBIOS tables

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask
Combined FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask. Present on newer Macs to avoid
extra parsing of SMBIOS tables.

52

https://docs.google.com/spreadsheets/d/1HTCBwfOBkXsHiK7os3b2CUc6k68axdJYdGl-TyXqLu0
https://opensource.apple.com/source/xnu/xnu-4570.71.2/bsd/sys/csr.h.auto.html

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case 10.14 is needed.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
– acpi_layer=0xFFFFFFFF
– acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
– arch=i386 (force kernel architecture to i386, see KernelArch)
– batman=VALUE (AppleSmartBatteryManager debug mask)
– batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
– cpus=VALUE (maximum number of CPUs used)
– debug=VALUE (debug mask)
– io=VALUE (IOKit debug mask)
– keepsyms=1 (show panic log debug symbols)
– kextlog=VALUE (kernel extension loading debug mask)
– nvram-log=1 (enables AppleEFINVRAM logs)
– nv_disable=1 (disables NVIDIA GPU acceleration)
– nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
– npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
– lapic_dont_panic=1
– slide=VALUE (manually set KASLR slide)
– smcdebug=VALUE (AppleSMC debug mask)
– -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
– -nehalem_error_disable
– -no_compat_check (disable model checking on 10.7+)
– -s (single mode)
– -v (verbose mode)
– -x (safe mode)

There are multiple external places summarising macOS argument lists: example 1, example 2.
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal

53

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

64-bit values with or without 0x. At different stages boot.efi will request different debugging (logging) modes
(e.g. after ExitBootServices it will only print to serial). Several booter arguments control whether these requests
will succeed. The list of known requests is covered below:

– 0x00 – INIT.
– 0x01 – VERBOSE (e.g. -v, force console logging).
– 0x02 – EXIT.
– 0x03 – RESET:OK.
– 0x04 – RESET:FAIL (e.g. unknown board-id, hibernate mismatch, panic loop, etc.).
– 0x05 – RESET:RECOVERY.
– 0x06 – RECOVERY.
– 0x07 – REAN:START.
– 0x08 – REAN:END.
– 0x09 – DT (can no longer log to DeviceTree).
– 0x0A – EXITBS:START (forced serial only).
– 0x0B – EXITBS:END (forced serial only).
– 0x0C – UNKNOWN.

In 10.15 debugging support was mostly broken before 10.15.4 due to some kind of refactoring and introduction
of a new debug protocol. Some of the arguments and their values below may not be valid for versions prior to
10.15.4. The list of known arguments is covered below:

– boot-save-log=VALUE — debug log save mode for normal boot.
∗ 0
∗ 1
∗ 2 — (default).
∗ 3
∗ 4 — (save to file).

– wake-save-log=VALUE — debug log save mode for hibernation wake.
∗ 0 — disabled.
∗ 1
∗ 2 — (default).
∗ 3 — (unavailable).
∗ 4 — (save to file, unavailable).

– breakpoint=VALUE — enables debug breaks (missing in production boot.efi).
∗ 0 — disables debug breaks on errors (default).
∗ 1 — enables debug breaks on errors.

– console=VALUE — enables console logging.
∗ 0 — disables console logging.
∗ 1 — enables console logging when debug protocol is missing (default).
∗ 2 — enables console logging unconditionally (unavailable).

– embed-log-dt=VALUE — enables DeviceTree logging.
∗ 0 — disables DeviceTree logging (default).
∗ 1 — enables DeviceTree logging.

– kc-read-size=VALUE — Chunk size used for buffered I/O from network or disk for prelinkedkernel reading
and related. Set to 1MB (0x100000) by default, can be tuned for faster booting.

– log-level=VALUE — log level bitmask.
∗ 0x01 — enables trace logging (default).

– serial=VALUE — enables serial logging.
∗ 0 — disables serial logging (default).
∗ 1 — enables serial logging for EXITBS:END onwards.
∗ 2 — enables serial logging for EXITBS:START onwards.
∗ 3 — enables serial logging when debug protocol is missing.
∗ 4 — enables serial logging unconditionally.

– timestamps=VALUE — enables timestamp logging.
∗ 0 — disables timestamp logging.
∗ 1 — enables timestamp logging (default).

– log=VALUE — deprecated starting from 10.15.
∗ 1 — AppleLoggingConOutOrErrSet/AppleLoggingConOutOrErrPrint (classical ConOut/StdErr)
∗ 2 — AppleLoggingStdErrSet/AppleLoggingStdErrPrint (StdErr or serial?)

54

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleDebugLog.h

∗ 4 — AppleLoggingFileSet/AppleLoggingFilePrint (BOOTER.LOG/BOOTER.OLD file on EFI partition)
– debug=VALUE — deprecated starting from 10.15.

∗ 1 — enables print something to BOOTER.LOG (stripped code implies there may be a crash)
∗ 2 — enables perf logging to /efi/debug-log in the device three
∗ 4 — enables timestamp printing for styled printf calls

– level=VALUE — deprecated starting from 10.15. Verbosity level of DEBUG output. Everything but
0x80000000 is stripped from the binary, and this is the default value.

Note: To see verbose output from boot.efi on modern macOS versions enable AppleDebug option. This will
save the log to general OpenCore log. For versions before 10.15.4 set bootercfg to log=1. This will print verbose
output onscreen.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg-once
Booter arguments override removed after first launch. Otherwise equivalent to bootercfg.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:efiboot-perf-record
Enable performance log saving in boot.efi. Performance log is saved to physical memory and is pointed
by efiboot-perf-record-data and efiboot-perf-record-size variables. Starting from 10.15.4 it can also be
saved to OpenCore log by AppleDebug option.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:fmm-computer-name
Current saved host name. ASCII string.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:nvda_drv
NVIDIA Web Driver control variable. Takes ASCII digit 1 or 0 to enable or disable installed driver.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:run-efi-updater
Override EFI firmware updating support in macOS (MultiUpdater, ThorUtil, and so on). Setting this to
No or alternative boolean-castable value will prevent any firmware updates in macOS starting with 10.10 at least.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:StartupMute
Mute startup chime sound in firmware audio support. 8-bit integer. The value of 0x00 means unmuted.
Missing variable or any other value means muted.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:SystemAudioVolume
System audio volume level for firmware audio support. 8-bit integer. The bit of 0x80 means muted. Lower bits are
used to encode volume range specific to installed audio codec. The value is capped by MaximumBootBeepVolume
AppleHDA layout value to avoid too loud audio playback in the firmware.

55

10 PlatformInfo
Platform information is comprised of several identification fields generated or filled manually to be compatible with
macOS services. The base part of the configuration may be obtained from AppleModels, which itself generates a set of
interfaces based on a database in YAML format. These fields are written to three select destinations:

• SMBIOS
• Data Hub
• NVRAM

Most of the fields specify the overrides in SMBIOS, and their field names conform to EDK2 SmBios.h header file.
However, several important fields reside in Data Hub and NVRAM. Some of the values can be found in more than
one field and/or destination, so there are two ways to control their update process: manual, where all the values are
specified (the default), and semi-automatic, where (Automatic) only select values are specified, and later used for
system configuration.

To inspect SMBIOS contents dmidecode utility can be used. Version with macOS specific enhancements can be
downloaded from Acidanthera/dmidecode.

10.1 Properties
1. Automatic

Type: plist boolean
Failsafe: false
Description: Generate PlatformInfo based on Generic section instead of using values from DataHub, NVRAM,
and SMBIOS sections.

Enabling this option is useful when Generic section is flexible enough:

• When enabled SMBIOS, DataHub, and PlatformNVRAM data is unused.
• When disabled Generic section is unused.

Warning: It is strongly discouraged set this option to false when intending to update platform information.
The only reason to do that is when doing minor correction of the SMBIOS present and similar. In all other cases
not using Automatic may lead to hard to debug errors.

2. CustomMemory
Type: plist boolean
Failsafe: false
Description: Use custom memory configuration defined in the Memory section. This completely replaces any
existing memory configuration in SMBIOS, and is only active when UpdateSMBIOS is set to true.

3. UpdateDataHub
Type: plist boolean
Failsafe: false
Description: Update Data Hub fields. These fields are read from Generic or DataHub sections depending on
Automatic value.

4. UpdateNVRAM
Type: plist boolean
Failsafe: false
Description: Update NVRAM fields related to platform information.

These fields are read from Generic or PlatformNVRAM sections depending on Automatic value. All the other
fields are to be specified with NVRAM section.

If UpdateNVRAM is set to false the aforementioned variables can be updated with NVRAM section. If UpdateNVRAM
is set to true the behaviour is undefined when any of the fields are present in NVRAM section.

5. UpdateSMBIOS
Type: plist boolean
Failsafe: false
Description: Update SMBIOS fields. These fields are read from Generic or SMBIOS sections depending on
Automatic value.

56

https://github.com/acidanthera/OpenCorePkg/blob/master/AppleModels
https://yaml.org/spec/1.2/spec.html
https://www.dmtf.org/standards/smbios
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Intel/Protocol/DataHub.h
https://github.com/acidanthera/audk/blob/master/MdePkg/Include/IndustryStandard/SmBios.h
http://www.nongnu.org/dmidecode
https://github.com/acidanthera/dmidecode/releases

6. UpdateSMBIOSMode
Type: plist string
Failsafe: Create
Description: Update SMBIOS fields approach:

• TryOverwrite — Overwrite if new size is <= than the page-aligned original and there are no issues with
legacy region unlock. Create otherwise. Has issues on some types of firmware.

• Create — Replace the tables with newly allocated EfiReservedMemoryType at AllocateMaxAddress without
any fallbacks.

• Overwrite — Overwrite existing gEfiSmbiosTableGuid and gEfiSmbiosTable3Guid data if it fits new size.
Abort with unspecified state otherwise.

• Custom—Write SMBIOS tables (gEfiSmbios(3)TableGuid) to gOcCustomSmbios(3)TableGuid to workaround
firmware overwriting SMBIOS contents at ExitBootServices. Otherwise equivalent to Create. Requires patch-
ing AppleSmbios.kext and AppleACPIPlatform.kext to read from another GUID: "EB9D2D31" - "EB9D2D35"
(in ASCII), done automatically by CustomSMBIOSGuid quirk.

Note: A side effect of using Custom approach is making SMBIOS updates exclusive to macOS, avoiding a collision
with existing Windows activation and custom OEM software but potentially breaking Apple-specific tools.

7. Generic
Type: plist dictionary
Description: Update all fields. This section is read only when Automatic is active.

8. DataHub
Type: plist dictionary
Optional: When Automatic is true
Description: Update Data Hub fields. This section is read only when Automatic is not active.

9. Memory
Type: plist dictionary
Optional: When CustomMemory is false
Description: Define custom memory configuration.

10. PlatformNVRAM
Type: plist dictionary
Optional: When Automatic is true
Description: Update platform NVRAM fields. This section is read only when Automatic is not active.

11. SMBIOS
Type: plist dictionary
Optional: When Automatic is true
Description: Update SMBIOS fields. This section is read only when Automatic is not active.

10.2 Generic Properties
1. SpoofVendor

Type: plist boolean
Failsafe: false
Description: Sets SMBIOS vendor fields to Acidanthera.

It is dangerous to use Apple in SMBIOS vendor fields for reasons given in SystemManufacturer description.
However, certain firmware may not provide valid values otherwise, which could break some software.

2. AdviseWindows
Type: plist boolean
Failsafe: false
Description: Forces Windows support in FirmwareFeatures.

Added bits to FirmwareFeatures:

• FW_FEATURE_SUPPORTS_CSM_LEGACY_MODE (0x1) - Without this bit it is not possible to reboot to Windows
installed on a drive with EFI partition being not the first partition on the disk.

57

• FW_FEATURE_SUPPORTS_UEFI_WINDOWS_BOOT (0x20000000) - Without this bit it is not possible to reboot to
Windows installed on a drive with EFI partition being the first partition on the disk.

3. SystemMemoryStatus
Type: plist string
Failsafe: Auto
Description: Indicates whether system memory is upgradable in PlatformFeature. This controls the visibility
of the Memory tab in About This Mac.

Valid values:

• Auto — use the original PlatformFeature value.
• Upgradable — explicitly unset PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.
• Soldered — explicitly set PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY (0x2) in PlatformFeature.

Note: On certain Mac models (namely MacBookPro10,x and any MacBookAir), SPMemoryReporter.spreporter
will ignore PT_FEATURE_HAS_SOLDERED_SYSTEM_MEMORY and assume that system memory is non-upgradable.

4. ProcessorType Type: plist integer
Failsafe: 0 (Automatic)
Description: Refer to SMBIOS ProcessorType.

5. SystemProductName
Type: plist string
Failsafe: MacPro6,1
Description: Refer to SMBIOS SystemProductName.

6. SystemSerialNumber
Type: plist string
Failsafe: OPENCORE_SN1
Description: Refer to SMBIOS SystemSerialNumber.

7. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified
Description: Refer to SMBIOS SystemUUID.

8. MLB
Type: plist string
Failsafe: OPENCORE_MLB_SN11
Description: Refer to SMBIOS BoardSerialNumber.

9. ROM
Type: plist data, 6 bytes
Failsafe: all zero
Description: Refer to 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

10.3 DataHub Properties
1. PlatformName

Type: plist string
Failsafe: Not installed
Description: Sets name in gEfiMiscSubClassGuid. Value found on Macs is platform in ASCII.

2. SystemProductName
Type: plist string
Failsafe: Not installed
Description: Sets Model in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemProductName
in Unicode.

3. SystemSerialNumber
Type: plist string
Failsafe: Not installed

58

Description: Sets SystemSerialNumber in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS
SystemSerialNumber in Unicode.

4. SystemUUID
Type: plist string, GUID
Failsafe: Not installed
Description: Sets system-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS SystemUUID
(with swapped byte order).

5. BoardProduct
Type: plist string
Failsafe: Not installed
Description: Sets board-id in gEfiMiscSubClassGuid. Value found on Macs is equal to SMBIOS BoardProduct
in ASCII.

6. BoardRevision
Type: plist data, 1 byte
Failsafe: 0
Description: Sets board-rev in gEfiMiscSubClassGuid. Value found on Macs seems to correspond to internal
board revision (e.g. 01).

7. StartupPowerEvents
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets StartupPowerEvents in gEfiMiscSubClassGuid. Value found on Macs is power management
state bitmask, normally 0. Known bits read by X86PlatformPlugin.kext:

• 0x00000001 — Shutdown cause was a PWROK event (Same as GEN_PMCON_2 bit 0)
• 0x00000002 — Shutdown cause was a SYS_PWROK event (Same as GEN_PMCON_2 bit 1)
• 0x00000004 — Shutdown cause was a THRMTRIP# event (Same as GEN_PMCON_2 bit 3)
• 0x00000008 — Rebooted due to a SYS_RESET# event (Same as GEN_PMCON_2 bit 4)
• 0x00000010 — Power Failure (Same as GEN_PMCON_3 bit 1 PWR_FLR)
• 0x00000020 — Loss of RTC Well Power (Same as GEN_PMCON_3 bit 2 RTC_PWR_STS)
• 0x00000040 — General Reset Status (Same as GEN_PMCON_3 bit 9 GEN_RST_STS)
• 0xffffff80 — SUS Well Power Loss (Same as GEN_PMCON_3 bit 14)
• 0x00010000 — Wake cause was a ME Wake event (Same as PRSTS bit 0, ME_WAKE_STS)
• 0x00020000 — Cold Reboot was ME Induced event (Same as PRSTS bit 1 ME_HRST_COLD_STS)
• 0x00040000 — Warm Reboot was ME Induced event (Same as PRSTS bit 2 ME_HRST_WARM_STS)
• 0x00080000 — Shutdown was ME Induced event (Same as PRSTS bit 3 ME_HOST_PWRDN)
• 0x00100000 — Global reset ME Watchdog Timer event (Same as PRSTS bit 6)
• 0x00200000 — Global reset PowerManagement Watchdog Timer event (Same as PRSTS bit 15)

8. InitialTSC
Type: plist integer, 64-bit
Failsafe: 0
Description: Sets InitialTSC in gEfiProcessorSubClassGuid. Sets initial TSC value, normally 0.

9. FSBFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets FSBFrequency in gEfiProcessorSubClassGuid.

Sets CPU FSB frequency. This value equals to CPU nominal frequency divided by CPU maximum bus ratio and
is specified in Hz. Refer to MSR_NEHALEM_PLATFORM_INFO (CEh) MSR value to determine maximum bus ratio on
modern Intel CPUs.

Note: This value is not used on Skylake and newer but is still provided to follow suit.

10. ARTFrequency
Type: plist integer, 64-bit
Failsafe: 0 (Automatic)
Description: Sets ARTFrequency in gEfiProcessorSubClassGuid.

59

This value contains CPU ART frequency, also known as crystal clock frequency. Its existence is exclusive to the
Skylake generation and newer. The value is specified in Hz, and is normally 24 MHz for client Intel segment, 25
MHz for server Intel segment, and 19.2 MHz for Intel Atom CPUs. macOS till 10.15 inclusive assumes 24 MHz
by default.

Note: On Intel Skylake X ART frequency may be a little less (approx. 0.25%) than 24 or 25 MHz due to special
EMI-reduction circuit as described in Acidanthera Bugtracker.

11. DevicePathsSupported
Type: plist integer, 32-bit
Failsafe: Not installed
Description: Sets DevicePathsSupported in gEfiMiscSubClassGuid. Must be set to 1 for AppleACPIPlat-
form.kext to append SATA device paths to Boot#### and efi-boot-device-data variables. Set to 1 on all
modern Macs.

12. SmcRevision
Type: plist data, 6 bytes
Failsafe: Not installed
Description: Sets REV in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC REV key.

13. SmcBranch
Type: plist data, 8 bytes
Failsafe: Not installed
Description: Sets RBr in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to generate
SMC RBr key.

14. SmcPlatform
Type: plist data, 8 bytes
Failsafe: Not installed
Description: Sets RPlt in gEfiMiscSubClassGuid. Custom property read by VirtualSMC or FakeSMC to
generate SMC RPlt key.

10.4 Memory Properties
1. DataWidth

Type: plist integer, 16-bit
Failsafe: 0xFFFF (unknown)
SMBIOS: Memory Device (Type 17) — Data Width
Description: Specifies the data width, in bits, of the memory. A DataWidth of 0 and a TotalWidth of 8
indicates that the device is being used solely to provide 8 error-correction bits.

2. Devices
Type: plist array
Failsafe: Empty
Description: Specifies the custom memory devices to be added.

Designed to be filled with plist dictionary values, describing each memory device. See Memory Devices
Properties section below. This should include all memory slots, even if unpopulated.

3. ErrorCorrection
Type: plist integer, 8-bit
Failsafe: 0x03
SMBIOS: Physical Memory Array (Type 16) — Memory Error Correction
Description: Specifies the primary hardware error correction or detection method supported by the memory.

• 0x01 — Other
• 0x02 — Unknown
• 0x03 — None
• 0x04 — Parity
• 0x05 — Single-bit ECC
• 0x06 — Multi-bit ECC

60

https://github.com/acidanthera/bugtracker/issues/448#issuecomment-524914166

• 0x07 — CRC

4. FormFactor
Type: plist integer, 8-bit
Failsafe: 0x02
SMBIOS: Memory Device (Type 17) — Form Factor
Description: Specifies the form factor of the memory. On Macs this should usually be DIMM or SODIMM.
Commonly used form factors are listed below.

When CustomMemory is false, this value is automatically set based on Mac product name.

• 0x01 — Other
• 0x02 — Unknown
• 0x09 — DIMM
• 0x0D — SODIMM
• 0x0F — FB-DIMM

5. MaxCapacity
Type: plist integer, 64-bit
Failsafe: 0
SMBIOS: Physical Memory Array (Type 16) — Maximum Capacity
Description: Specifies the maximum amount of memory, in bytes, supported by the system.

6. TotalWidth
Type: plist integer, 16-bit
Failsafe: 0xFFFF (unknown)
SMBIOS: Memory Device (Type 17) — Total Width
Description: Specifies the total width, in bits, of the memory, including any check or error-correction bits. If
there are no error-correction bits, this value should be equal to DataWidth.

7. Type
Type: plist integer, 8-bit
Failsafe: 0x02
SMBIOS: Memory Device (Type 17) — Memory Type
Description: Specifies the memory type. Commonly used types are listed below.

• 0x01 — Other
• 0x02 — Unknown
• 0x0F — SDRAM
• 0x12 — DDR
• 0x13 — DDR2
• 0x14 — DDR2 FB-DIMM
• 0x18 — DDR3
• 0x1A — DDR4
• 0x1B — LPDDR
• 0x1C — LPDDR2
• 0x1D — LPDDR3
• 0x1E — LPDDR4

8. TypeDetail
Type: plist integer, 16-bit
Failsafe: 0x4
SMBIOS: Memory Device (Type 17) — Type Detail
Description: Specifies additional memory type information.

• Bit 0 — Reserved, set to 0
• Bit 1 — Other
• Bit 2 — Unknown
• Bit 7 — Synchronous
• Bit 13 — Registered (buffered)
• Bit 14 — Unbuffered (unregistered)

61

10.4.1 Memory Device Properties

1. AssetTag
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Asset Tag
Description: Specifies the asset tag of this memory device.

2. BankLocator
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Bank Locator
Description: Specifies the physically labeled bank where the memory device is located.

3. DeviceLocator
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Device Locator
Description: Specifies the physically-labeled socket or board position where the memory device is located.

4. Manufacturer
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Manufacturer
Description: Specifies the manufacturer of this memory device.

5. PartNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Part Number
Description: Specifies the part number of this memory device.

6. SerialNumber
Type: plist string
Failsafe: Unknown
SMBIOS: Memory Device (Type 17) — Serial Number
Description: Specifies the serial number of this memory device.

7. Size
Type: plist integer, 32-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Size
Description: Specifies the size of the memory device, in megabytes. 0 indicates this slot is not populated.

8. Speed
Type: plist integer, 16-bit
Failsafe: 0
SMBIOS: Memory Device (Type 17) — Speed
Description: Specifies the maximum capable speed of the device, in megatransfers per second (MT/s). 0
indicates an unknown speed.

10.5 PlatformNVRAM Properties
1. BID

Type: plist string
Failsafe: Not installed
Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID.

2. ROM
Type: plist data, 6 bytes
Failsafe: Not installed

62

Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ROM.

3. MLB
Type: plist string
Failsafe: Not installed
Description: Specifies the values of NVRAM variables 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB and
4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:MLB.

4. FirmwareFeatures
Type: plist data, 8 bytes
Failsafe: Not installed
Description: This variable comes in pair with FirmwareFeaturesMask. Specifies the values of NVRAM variables:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeatures
• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeatures

5. FirmwareFeaturesMask
Type: plist data, 8 bytes
Failsafe: Not installed
Description: This variable comes in pair with FirmwareFeatures. Specifies the values of NVRAM variables:

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:FirmwareFeaturesMask
• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:ExtendedFirmwareFeaturesMask

6. SystemUUID
Type: plist string
Failsafe: Not installed
Description: Specifies the value of NVRAM variable 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:system-id
for boot services only. Value found on Macs is equal to SMBIOS SystemUUID.

10.6 SMBIOS Properties
1. BIOSVendor

Type: plist string
Failsafe: OEM specified
SMBIOS: BIOS Information (Type 0) — Vendor
Description: BIOS Vendor. All rules of SystemManufacturer do apply.

2. BIOSVersion
Type: plist string
Failsafe: OEM specified
SMBIOS: BIOS Information (Type 0) — BIOS Version
Description: Firmware version. This value gets updated and takes part in update delivery configuration and
macOS version compatibility. This value could look like MM71.88Z.0234.B00.1809171422 in older firmware and
is described in BiosId.h. In newer firmware, it should look like 236.0.0.0.0 or 220.230.16.0.0 (iBridge:
16.16.2542.0.0,0). iBridge version is read from BridgeOSVersion variable, and is only present on macs with
T2.

Apple ROM Version
BIOS ID: MBP151.88Z.F000.B00.1811142212
Model: MBP151
EFI Version: 220.230.16.0.0
Built by: root@quinoa
Date: Wed Nov 14 22:12:53 2018
Revision: 220.230.16 (B&I)
ROM Version: F000_B00
Build Type: Official Build, RELEASE
Compiler: Apple LLVM version 10.0.0 (clang-1000.2.42)
UUID: E5D1475B-29FF-32BA-8552-682622BA42E1
UUID: 151B0907-10F9-3271-87CD-4BF5DBECACF5

63

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Guid/BiosId.h

3. BIOSReleaseDate
Type: plist string
Failsafe: OEM specified
SMBIOS: BIOS Information (Type 0) — BIOS Release Date
Description: Firmware release date. Similar to BIOSVersion. May look like 12/08/2017.

4. SystemManufacturer
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — Manufacturer
Description: OEM manufacturer of the particular board. Shall not be specified unless strictly required. Should
not contain Apple Inc., as this confuses numerous services present in the operating system, such as firmware
updates, eficheck, as well as kernel extensions developed in Acidanthera, such as Lilu and its plugins. In addition
it will also make some operating systems such as Linux unbootable.

5. SystemProductName
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1), Product Name
Description: Preferred Mac model used to mark the device as supported by the operating system. This value
must be specified by any configuration for later automatic generation of the related values in this and other
SMBIOS tables and related configuration parameters. If SystemProductName is not compatible with the target
operating system, -no_compat_check boot argument may be used as an override.

Note: If SystemProductName is unknown, and related fields are unspecified, default values should be assumed as
being set to MacPro6,1 data. The list of known products can be found in AppleModels.

6. SystemVersion
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — Version
Description: Product iteration version number. May look like 1.1.

7. SystemSerialNumber
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — Serial Number
Description: Product serial number in defined format. Known formats are described in macserial.

8. SystemUUID
Type: plist string, GUID
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — UUID
Description: A UUID is an identifier that is designed to be unique across both time and space. It requires no
central registration process.

9. SystemSKUNumber
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — SKU Number
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models. Sometimes it can be just empty.

10. SystemFamily
Type: plist string
Failsafe: OEM specified
SMBIOS: System Information (Type 1) — Family
Description: Family name. May look like iMac Pro.

11. BoardManufacturer
Type: plist string
Failsafe: OEM specified

64

https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macserial/FORMAT.md

SMBIOS: Baseboard (or Module) Information (Type 2) - Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

12. BoardProduct
Type: plist string
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Product
Description: Mac Board ID (board-id). May look like Mac-7BA5B2D9E42DDD94 or Mac-F221BEC8 in older
models.

13. BoardVersion
Type: plist string
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) - Version
Description: Board version number. Varies, may match SystemProductName or SystemProductVersion.

14. BoardSerialNumber
Type: plist string
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Serial Number
Description: Board serial number in defined format. Known formats are described in macserial.

15. BoardAssetTag
Type: plist string
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Asset Tag
Description: Asset tag number. Varies, may be empty or Type2 - Board Asset Tag.

16. BoardType
Type: plist integer
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Board Type
Description: Either 0xA (Motherboard (includes processor, memory, and I/O) or 0xB (Processor/Memory
Module), refer to Table 15 – Baseboard: Board Type for more details.

17. BoardLocationInChassis
Type: plist string
Failsafe: OEM specified
SMBIOS: Baseboard (or Module) Information (Type 2) — Location in Chassis
Description: Varies, may be empty or Part Component.

18. ChassisManufacturer
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Manufacturer
Description: Board manufacturer. All rules of SystemManufacturer do apply.

19. ChassisType
Type: plist integer
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Type
Description: Chassis type, refer to Table 17 — System Enclosure or Chassis Types for more details.

20. ChassisVersion
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match BoardProduct.

21. ChassisSerialNumber
Type: plist string
Failsafe: OEM specified

65

https://github.com/acidanthera/macserial/blob/master/FORMAT.md

SMBIOS: System Enclosure or Chassis (Type 3) — Version
Description: Should match SystemSerialNumber.

22. ChassisAssetTag
Type: plist string
Failsafe: OEM specified
SMBIOS: System Enclosure or Chassis (Type 3) — Asset Tag Number
Description: Chassis type name. Varies, could be empty or MacBook-Aluminum.

23. PlatformFeature
Type: plist integer, 32-bit
Failsafe: 0xFFFFFFFF
SMBIOS: APPLE_SMBIOS_TABLE_TYPE133 - PlatformFeature
Description: Platform features bitmask. Refer to AppleFeatures.h for more details. Use 0xFFFFFFFF value to
not provide this table.

24. SmcVersion
Type: plist data, 16 bytes
Failsafe: All zero
SMBIOS: APPLE_SMBIOS_TABLE_TYPE134 - Version
Description: ASCII string containing SMC version in upper case. Missing on T2 based Macs. Ignored when
zero.

25. FirmwareFeatures
Type: plist data, 8 bytes
Failsafe: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeatures and ExtendedFirmwareFeatures
Description: 64-bit firmware features bitmask. Refer to AppleFeatures.h for more details. Lower 32 bits match
FirmwareFeatures. Upper 64 bits match ExtendedFirmwareFeatures.

26. FirmwareFeaturesMask
Type: plist data, 8 bytes
Failsafe: 0
SMBIOS: APPLE_SMBIOS_TABLE_TYPE128 - FirmwareFeaturesMask and ExtendedFirmwareFeaturesMask
Description: Supported bits of extended firmware features bitmask. Refer to AppleFeatures.h for more details.
Lower 32 bits match FirmwareFeaturesMask. Upper 64 bits match ExtendedFirmwareFeaturesMask.

27. ProcessorType
Type: plist integer, 16-bit
Failsafe: 0 (Automatic)
SMBIOS: APPLE_SMBIOS_TABLE_TYPE131 - ProcessorType
Description: Combined of Processor Major and Minor types.

Automatic value generation tries to provide most accurate value for the currently installed CPU. When this fails
please make sure to create an issue and provide sysctl machdep.cpu and dmidecode output. For a full list of
available values and their limitations (the value will only apply if the CPU core count matches) refer to Apple
SMBIOS definitions header here.

66

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleFeatures.h
https://github.com/acidanthera/bugtracker/issues
https://github.com/acidanthera/dmidecode
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/IndustryStandard/AppleSmBios.h

11 UEFI

11.1 Introduction
UEFI (Unified Extensible Firmware Interface) is a specification that defines a software interface between an operating
system and platform firmware. This section allows to load additional UEFI modules and/or apply tweaks for the onboard
firmware. To inspect firmware contents, apply modifications and perform upgrades UEFITool and supplementary
utilities can be used.

11.2 Drivers
Depending on the firmware a different set of drivers may be required. Loading an incompatible driver may lead the
system to unbootable state or even cause permanent firmware damage. Some of the known drivers are listed below:

67

https://uefi.org/specifications
https://github.com/LongSoft/UEFITool/releases

AudioDxe* HDA audio support driver in UEFI firmware for most Intel and some other analog audio
controllers. Staging driver, refer to acidanthera/bugtracker#740 for known issues in AudioDxe.

CrScreenshotDxe* Screenshot making driver saving images to the root of OpenCore partition (ESP) or any avail-
able writeable filesystem upon pressing F10. This is a modified version of CrScreenshotDxe
driver by Nikolaj Schlej.

ExFatDxe Proprietary ExFAT file system driver for Bootcamp support commonly found in Apple
firmware. For Sandy Bridge and earlier CPUs ExFatDxeLegacy driver should be used due to
the lack of RDRAND instruction support.

HfsPlus Proprietary HFS file system driver with bless support commonly found in Apple firmware.
For Sandy Bridge and earlier CPUs HfsPlusLegacy driver should be used due to the lack of
RDRAND instruction support.

HiiDatabase* HII services support driver from MdeModulePkg. This driver is included in most types of
firmware starting with the Ivy Bridge generation. Some applications with GUI, such as UEFI
Shell, may need this driver to work properly.

EnhancedFatDxe FAT filesystem driver from FatPkg. This driver is embedded in all UEFI firmware and cannot
be used from OpenCore. Sevaral firmware have a flawed FAT support implementation that
may lead to corrupted filesystems on write attempts. Embedding this driver within the
firmware may be required in case writing to the EFI partition is needed during the boot
process.

NvmExpressDxe* NVMe support driver from MdeModulePkg. This driver is included in most firmware starting
with the Broadwell generation. For Haswell and earlier, embedding it within the firmware
may be more favourable in case a NVMe SSD drive is installed.

OpenCanopy* OpenCore plugin implementing graphical interface.
OpenRuntime* OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol.
OpenUsbKbDxe* USB keyboard driver adding the support of AppleKeyMapAggregator protocols on top of a

custom USB keyboard driver implementation. This is an alternative to builtin KeySupport,
which may work better or worse depending on the firmware.

PartitionDxe Proprietary partition management driver with Apple Partitioning Scheme support commonly
found in Apple firmware. This driver can be used to support loading older DMG recoveries
such as macOS 10.9 using Apple Partitioning Scheme. For Sandy Bridge and earlier CPUs
PartitionDxeLegacy driver should be used due to the lack of RDRAND instruction support.

Ps2KeyboardDxe* PS/2 keyboard driver from MdeModulePkg. OpenDuetPkg and some types of firmware may not
include this driver, but it is necessary for PS/2 keyboard to work. Note, unlike OpenUsbKbDxe
this driver has no AppleKeyMapAggregator support and thus requires KeySupport to be
enabled.

Ps2MouseDxe* PS/2 mouse driver from MdeModulePkg. Some very old laptop firmware may not include
this driver but it is necessary for the touchpad to work in UEFI graphical interfaces such as
OpenCanopy.

UsbMouseDxe* USB mouse driver from MdeModulePkg. Some virtual machine firmware such as OVMF may
not include this driver but it is necessary for the mouse to work in UEFI graphical interfaces
such as OpenCanopy.

VBoxHfs HFS file system driver with bless support. This driver is an alternative to a closed source
HfsPlus driver commonly found in Apple firmware. While it is feature complete, it is
approximately 3 times slower and is yet to undergo a security audit.

XhciDxe* XHCI USB controller support driver from MdeModulePkg. This driver is included in most
types of firmware starting with the Sandy Bridge generation. For earlier firmware or legacy
systems, it may be used to support external USB 3.0 PCI cards.

Driver marked with * are bundled with OpenCore. To compile the drivers from UDK (EDK II) the same command
used for OpenCore compilation can be taken, but choose a corresponding package:

git clone https://github.com/acidanthera/audk UDK
cd UDK
source edksetup.sh
make -C BaseTools
build -a X64 -b RELEASE -t XCODE5 -p FatPkg/FatPkg.dsc
build -a X64 -b RELEASE -t XCODE5 -p MdeModulePkg/MdeModulePkg.dsc

68

https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/bugtracker/issues/740
https://github.com/acidanthera/OpenCorePkg
https://github.com/LongSoft/CrScreenshotDxe
https://github.com/NikolajSchlej
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/audk
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/audk

11.3 Tools and Applications
Standalone tools may help to debug firmware and hardware. Some of the known tools are listed below. While some
tools can be launched from within OpenCore, see more details in the Tools subsection of the configuration, most should
be run separately either directly or from Shell.

To boot into OpenShell or any other tool directly save OpenShell.efi under the name of EFI\BOOT\BOOTX64.EFI on
a FAT32 partition. In general it is unimportant whether the partition scheme is GPT or MBR.

While the previous approach works both on Macs and other computers, an alternative Mac-only approach to bless the
tool on an HFS+ or APFS volume:

sudo bless --verbose --file /Volumes/VOLNAME/DIR/OpenShell.efi \
--folder /Volumes/VOLNAME/DIR/ --setBoot

Listing 3: Blessing tool

Note 1 : /System/Library/CoreServices/BridgeVersion.bin should be copied to /Volumes/VOLNAME/DIR.
Note 2 : To be able to use bless disabling System Integrity Protection is necessary.
Note 3 : To be able to boot Secure Boot might be disabled if present.

Some of the known tools are listed below (builtin tools are marked with *):

BootKicker* Enter Apple BootPicker menu (exclusive for Macs with compatible GPUs).
ChipTune* Test BeepGen protocol and generate audio signals of different style and length.
CleanNvram* Reset NVRAM alternative bundled as a standalone tool.
GopStop* Test GraphicsOutput protocol with a simple scenario.
HdaCodecDump* Parse and dump High Definition Audio codec information (requires AudioDxe).
KeyTester* Test keyboard input in SimpleText mode.
MemTest86 Memory testing utility.
OpenControl* Unlock and lock back NVRAM protection for other tools to be able to get full NVRAM

access when launching from OpenCore.
OpenShell* OpenCore-configured UEFI Shell for compatibility with a broad range of firmware.
PavpProvision Perform EPID provisioning (requires certificate data configuration).
ResetSystem* Utility to perform system reset. Takes reset type as an argument: ColdReset, Firmware,

Shutdown, WarmReset. Defaults to ColdReset.
RtcRw* Utility to read and write RTC (CMOS) memory.
VerifyMsrE2* Check CFG Lock (MSR 0xE2 write protection) consistency across all cores.

11.4 OpenCanopy
OpenCanopy is a graphical OpenCore user interface that runs in External PickerMode and relies on OpenCorePkg
OcBootManagementLib similar to the builtin text interface.

OpenCanopy requires graphical resources located in Resources directory to run. Sample resources (fonts and images)
can be found in OcBinaryData repository. Customised icons can be found over the internet (e.g. here or there).

OpenCanopy provides full support for PickerAttributes and offers a configurable builtin icon set. The default chosen
icon set depends on the DefaultBackgroundColor variable value. For Light Gray Old icon set will be used, for other
colours — the one without a prefix.

Predefined icons are put to \EFI\OC\Resources\Image directory. Full list of supported icons (in .icns format) is
provided below. Missing optional icons will use the closest available icon. External entries will use Ext-prefixed icon if
available (e.g. OldExtHardDrive.icns).

• Cursor — Mouse cursor (mandatory).
• Selected — Selected item (mandatory).
• Selector — Selecting item (mandatory).
• HardDrive — Generic OS (mandatory).
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.

69

https://developer.apple.com/library/archive/documentation/Security/Conceptual/System_Integrity_Protection_Guide/ConfiguringSystemIntegrityProtection/ConfiguringSystemIntegrityProtection.html
https://support.apple.com/HT208330
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg/tree/master/Application/GopStop
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://www.memtest86.com
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
http://github.com/tianocore/edk2
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OpenCorePkg
https://github.com/acidanthera/OcBinaryData
https://github.com/blackosx/OpenCanopyIcons
https://applelife.ru/threads/kastomizacija-opencanopy.2945020/

• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

Predefined labels are put to \EFI\OC\Resources\Label directory. Each label has .lbl or .l2x suffix to represent the
scaling level. Full list of labels is provided below. All labels are mandatory.

• EFIBoot — Generic OS.
• Apple — Apple OS.
• AppleRecv — Apple Recovery OS.
• AppleTM — Apple Time Machine.
• Windows — Windows.
• Other — Custom entry (see Entries).
• ResetNVRAM — Reset NVRAM system action or tool.
• Shell — Entry with UEFI Shell name (e.g. OpenShell).
• Tool — Any other tool.

Label and icon generation can be performed with bundled utilities: disklabel and icnspack. Please refer to sample
data for the details about the dimensions. Font is Helvetica 12 pt times scale factor.

Font format corresponds to AngelCode binary BMF. While there are many utilities to generate font files, currently it is
recommended to use dpFontBaker to generate bitmap font (using CoreText produces best results) and fonverter to
export it to binary format.

11.5 OpenRuntime
OpenRuntime is an OpenCore plugin implementing OC_FIRMWARE_RUNTIME protocol. This protocol implements multiple
features required for OpenCore that are otherwise not possible to implement in OpenCore itself as they are needed to
work in runtime, i.e. during operating system functioning. Feature highlights:

• NVRAM namespaces, allowing to isolate operating systems from accessing select variables (e.g. RequestBootVarRouting
or ProtectSecureBoot).

• Read-only and write-only NVRAM variables, enhancing the security of OpenCore, Lilu, and Lilu plugins, such as
VirtualSMC, which implements AuthRestart support.

• NVRAM isolation, allowing to protect all variables from being written from an untrusted operating system (e.g.
DisableVariableWrite).

• UEFI Runtime Services memory protection management to workaround read-only mapping (e.g. EnableWriteUnprotector).

11.6 Properties
1. APFS

Type: plist dict
Failsafe: None
Description: Provide APFS support as configured in APFS Properties section below.

2. Audio
Type: plist dict
Failsafe: None
Description: Configure audio backend support described in Audio Properties section below.

Audio support provides a way for upstream protocols to interact with the selected hardware and audio resources.
All audio resources should reside in \EFI\OC\Resources\Audio directory. Currently the supported audio file
formats are MP3 and WAVE PCM. While it is driver-dependent which audio stream format is supported, most
common audio cards support 16-bit signed stereo audio at 44100 or 48000 Hz.

Audio file path is determined by audio type, audio localisation, and audio path. Each filename looks as follows:
[audio type]_[audio localisation]_[audio path].[audio ext]. For unlocalised files filename does not
include the language code and looks as follows: [audio type]_[audio path].[audio ext]. Audio extension
can either be mp3 or wav.

70

https://www.angelcode.com/products/bmfont
https://github.com/danpla/dpfontbaker
https://github.com/danpla/dpfontbaker/pull/1
https://github.com/usr-sse2/fonverter

• Audio type can be OCEFIAudio for OpenCore audio files or AXEFIAudio for macOS bootloader audio files.
• Audio localisation is a two letter language code (e.g. en) with an exception for Chinese, Spanish, and

Portuguese. Refer to APPLE_VOICE_OVER_LANGUAGE_CODE definition for the list of all supported localisations.
• Audio path is the base filename corresponding to a file identifier. For macOS bootloader audio paths refer to

APPLE_VOICE_OVER_AUDIO_FILE definition. For OpenCore audio paths refer to OC_VOICE_OVER_AUDIO_FILE
definition. The only exception is OpenCore boot chime file, which is OCEFIAudio_VoiceOver_Boot.mp3.

Audio localisation is determined separately for macOS bootloader and OpenCore. For macOS bootloader it is
set in preferences.efires archive in systemLanguage.utf8 file and is controlled by the operating system. For
OpenCore the value of prev-lang:kbd variable is used. When native audio localisation of a particular file is
missing, English language (en) localisation is used. Sample audio files can be found in OcBinaryData repository.

3. ConnectDrivers
Type: plist boolean
Failsafe: false
Description: Perform UEFI controller connection after driver loading.

This option is useful for loading drivers following UEFI driver model as they may not start by themselves.
Examples of such drivers are filesystem or audio drivers. While effective, this option may not be necessary for
drivers performing automatic connection, and may slightly slowdown the boot.

Note: Some types of firmware, particularly those made by Apple, only connect the boot drive to speed up the
boot process. Enable this option to be able to see all the boot options when running multiple drives.

4. Drivers
Type: plist array
Failsafe: None
Description: Load selected drivers from OC/Drivers directory.

Designed to be filled with string filenames meant to be loaded as UEFI drivers.

5. Input
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for input (keyboard and mouse) in Input Properties section
below.

6. Output
Type: plist dict
Failsafe: None
Description: Apply individual settings designed for output (text and graphics) in Output Properties section
below.

7. ProtocolOverrides
Type: plist dict
Failsafe: None
Description: Force builtin versions of select protocols described in ProtocolOverrides Properties section below.

Note: all protocol instances are installed prior to driver loading.

8. Quirks
Type: plist dict
Failsafe: None
Description: Apply individual firmware quirks described in Quirks Properties section below.

9. ReservedMemory
Type: plist array
Description: Designed to be filled with plist dict values, describing memory areas exquisite to particular
firmware and hardware functioning, which should not be used by the operating system. An example of such memory
region could be second 256 MB corrupted by Intel HD 3000 or an area with faulty RAM. See ReservedMemory
Properties section below.

71

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Apple/Protocol/AppleVoiceOver.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcAudio.h
https://github.com/acidanthera/OcBinaryData

11.7 APFS Properties
1. EnableJumpstart

Type: plist boolean
Failsafe: false
Description: Load embedded APFS drivers from APFS containers.

APFS EFI driver is bundled in all bootable APFS containers. This option performs loading of signed APFS
drivers with respect to ScanPolicy. See more details in “EFI Jumpstart” section of Apple File System Reference.

2. GlobalConnect
Type: plist boolean
Failsafe: false
Description: Perform full device connection during APFS loading.

Instead of partition handle connection normally used for APFS driver loading every handle is connected recursively.
This may take more time than usual but can be the only way to access APFS partitions on some types of firmware
such as those on older HP laptops.

3. HideVerbose
Type: plist boolean
Failsafe: false
Description: Hide verbose output from APFS driver.

APFS verbose output can be useful for debugging.

4. JumpstartHotPlug
Type: plist boolean
Failsafe: false
Description: Load APFS drivers for newly connected devices.

Performs APFS driver loading not only at OpenCore startup but also during boot picker. This permits APFS
USB hot plug. Disable if not required.

5. MinDate
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver date.

APFS driver date connects APFS driver with the calendar release date. Older versions of APFS drivers may
contain unpatched vulnerabilities, which can be used to inflict harm to the computer. This option permits
restricting APFS drivers to only recent releases.

• 0 — require the default supported release date of APFS in OpenCore. The default release date will increase
with time and thus this setting is recommended. Currently set to 2018/06/21.

• -1 — permit any release date to load (strongly discouraged).
• Other — use custom minimal APFS release date, e.g. 20200401 for 2020/04/01. APFS release dates can be

found in OpenCore boot log and OcApfsLib.

6. MinVersion
Type: plist integer
Failsafe: 0
Description: Minimal allowed APFS driver version.

APFS driver version connects APFS driver with the macOS release. APFS drivers from older macOS releases will
become unsupported and thus may contain unpatched vulnerabilities, which can be used to inflict harm to the
computer. This option permits restricting APFS drivers to only modern macOS versions.

• 0 — require the default supported version of APFS in OpenCore. The default version will increase with
time and thus this setting is recommended. Currently set to the latest point release from High Sierra from
App Store (748077008000000).

• -1 — permit any version to load (strongly discouraged).
• Other — use custom minimal APFS version, e.g. 1412101001000000 from macOS Catalina 10.15.4. APFS

versions can be found in OpenCore boot log and OcApfsLib.

72

https://developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h
https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Library/OcApfsLib.h

11.8 Audio Properties
1. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
IOHDACodecAddress field.

2. AudioDevice
Type: plist string
Failsafe: empty string
Description: Device path of the specified audio controller for audio support.

Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result in
the first available audio controller to be used.

3. AudioOut
Type: plist integer
Failsafe: 0
Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

4. AudioSupport
Type: plist boolean
Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume
Type: plist integer
Failsafe: 0
Description: Minimal heard volume level from 0 to 100.

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot
chime sound will not play if the calculated volume level is less than MinimumVolume.

6. PlayChime
Type: plist string
Failsafe: empty string
Description: Play chime sound at startup.

73

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable. Possible values include:

• Auto — Enables chime when StartupMute NVRAM variable is not present or set to 00.
• Enabled — Enables chime unconditionally.
• Disabled — Disables chime unconditionally.

Note: Enabled can be used in separate from StartupMute NVRAM variable to avoid conflicts when the firmware
is able to play boot chime.

7. SetupDelay
Type: plist integer
Failsafe: 0
Description: Audio codec reconfiguration delay in microseconds.

Some codecs require a vendor-specific delay after the reconfiguration (e.g. volume setting). This option makes it
configurable. In general the necessary delay may be as long as 0.5 seconds.

8. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties
1. KeyFiltering

Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input
protocols. This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables
107 and 108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on the platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

74

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The
recommended value for this option is 2 milliseconds, but it may be decreased for faster platforms and increased
for slower.

4. KeySupport
Type: plist boolean
Failsafe: false
Description: Enable internal keyboard input translation to AppleKeyMapAggregator protocol.

This option activates the internal keyboard interceptor driver, based on AppleGenericInput aka (AptioInputFix),
to fill AppleKeyMapAggregator database for input functioning. In case a separate driver is used, such as
OpenUsbKbDxe, this option should never be enabled.

5. KeySupportMode
Type: plist string
Failsafe: empty string
Description: Set internal keyboard input translation to AppleKeyMapAggregator protocol mode.

• Auto — Performs automatic choice as available with the following preference: AMI, V2, V1.
• V1 — Uses UEFI standard legacy input protocol EFI_SIMPLE_TEXT_INPUT_PROTOCOL.
• V2 — Uses UEFI standard modern input protocol EFI_SIMPLE_TEXT_INPUT_EX_PROTOCOL.
• AMI — Uses APTIO input protocol AMI_EFIKEYCODE_PROTOCOL.

Note: Currently V1, V2, and AMI unlike Auto only do filtering of the particular specified protocol. This may
change in the future versions.

6. KeySwap
Type: plist boolean
Failsafe: false
Description: Swap Command and Option keys during submission.

This option may be useful for keyboard layouts with Option key situated to the right of Command key.

7. PointerSupport
Type: plist boolean
Failsafe: false
Description: Enable internal pointer driver.

This option implements standard UEFI pointer protocol (EFI_SIMPLE_POINTER_PROTOCOL) through select OEM
protocols. The option may be useful on Z87 ASUS boards, where EFI_SIMPLE_POINTER_PROTOCOL is broken.

8. PointerSupportMode
Type: plist string
Failsafe: empty string
Description: Set OEM protocol used for internal pointer driver.

Currently the only supported variant is ASUS, using specialised protocol available on select Z87 and Z97 ASUS
boards. More details can be found in LongSoft/UefiTool#116.

9. TimerResolution
Type: plist integer
Failsafe: 0
Description: Set architecture timer resolution.

This option allows to update firmware architecture timer period with the specified value in 100 nanosecond units.
Setting a lower value generally improves performance and responsiveness of the interface and input handling.

The recommended value is 50000 (5 milliseconds) or slightly higher. Select ASUS Z87 boards use 60000 for the
interface. Apple boards use 100000. In case of issues, this option can be left as 0.

75

https://github.com/LongSoft/UEFITool/pull/116

11.10 Output Properties
1. TextRenderer

Type: plist string
Failsafe: BuiltinGraphics
Description: Chooses renderer for text going through standard console output.

Currently two renderers are supported: Builtin and System. System renderer uses firmware services for text
rendering. Builtin bypassing firmware services and performs text rendering on its own. Different renderers
support a different set of options. It is recommended to use Builtin renderer, as it supports HiDPI mode and
uses full screen resolution.

UEFI firmware generally supports ConsoleControl with two rendering modes: Graphics and Text. Some types
of firmware do not support ConsoleControl and rendering modes. OpenCore and macOS expect text to only be
shown in Graphics mode and graphics to be drawn in any mode. Since this is not required by UEFI specification,
exact behaviour varies.

Valid values are combinations of text renderer and rendering mode:

• BuiltinGraphics — Switch to Graphics mode and use Builtin renderer with custom ConsoleControl.
• BuiltinText — Switch to Text mode and use Builtin renderer with custom ConsoleControl.
• SystemGraphics — Switch to Graphics mode and use System renderer with custom ConsoleControl.
• SystemText — Switch to Text mode and use System renderer with custom ConsoleControl.
• SystemGeneric — Use System renderer with system ConsoleControl assuming it behaves correctly.

The use of BuiltinGraphics is generally straightforward. For most platforms it is necessary to enable
ProvideConsoleGop, set Resolution to Max. BuiltinText variant is an alternative BuiltinGraphics for
some very old and buggy laptop firmware, which can only draw in Text mode.

The use of System protocols is more complicated. In general the preferred setting is SystemGraphics or
SystemText. Enabling ProvideConsoleGop, setting Resolution to Max, enabling ReplaceTabWithSpace is
useful on almost all platforms. SanitiseClearScreen, IgnoreTextInGraphics, and ClearScreenOnModeSwitch
are more specific, and their use depends on the firmware.

Note: Some Macs, namely MacPro5,1, may have broken console output with newer GPUs, and thus only
BuiltinGraphics may work for them.

2. ConsoleMode
Type: plist string
Failsafe: Empty string
Description: Sets console output mode as specified with the WxH (e.g. 80x24) formatted string.

Set to empty string not to change console mode. Set to Max to try to use largest available console mode. Currently
Builtin text renderer supports only one console mode, so this option is ignored.

Note: This field is best left empty on most types of firmware.

3. Resolution
Type: plist string
Failsafe: Empty string
Description: Sets console output screen resolution.

• Set to WxH@Bpp (e.g. 1920x1080@32) or WxH (e.g. 1920x1080) formatted string to request custom resolution
from GOP if available.

• Set to empty string not to change screen resolution.
• Set to Max to try to use largest available screen resolution.

On HiDPI screens APPLE_VENDOR_VARIABLE_GUID UIScale NVRAM variable may need to be set to 02 to enable
HiDPI scaling in Builtin text renderer, FileVault 2 UEFI password interface, and boot screen logo. Refer to
Recommended Variables section for more details.

Note: This will fail when console handle has no GOP protocol. When the firmware does not provide it, it can be
added with ProvideConsoleGop set to true.

76

4. ForceResolution
Type: plist boolean
Failsafe: false
Description: Forces Resolution to be set in cases where the desired resolution is not available by default, such
as on legacy Intel GMA and first generation Intel HD Graphics (Ironlake/Arrandale). Setting Resolution to Max
will try to pull the largest available resolution from the connected display’s EDID.

Note: This option depends on the OC_FORCE_RESOLUTION_PROTOCOL protocol being present. This protocol is
currently only supported by OpenDuetPkg. The OpenDuetPkg implementation currently only supports Intel
iGPUs.

5. ClearScreenOnModeSwitch
Type: plist boolean
Failsafe: false
Description: Some types of firmware only clear part of the screen when switching from graphics to text mode,
leaving a fragment of previously drawn images visible. This option fills the entire graphics screen with black
colour before switching to text mode.

Note: This option only applies to System renderer.

6. DirectGopRendering
Type: plist boolean
Failsafe: false
Description: Use builtin graphics output protocol renderer for console.

On some types of firmware, such as on the MacPro5,1, this may provide better performance or fix rendering
issues. However, this option is not recommended unless there is an obvious benefit as it may result in issues such
as slower scrolling.

7. IgnoreTextInGraphics
Type: plist boolean
Failsafe: false
Description: Some types of firmware output text onscreen in both graphics and text mode. This is typically
unexpected as random text may appear over graphical images and cause UI corruption. Setting this option to
true will discard all text output when console control is in a different mode from Text.

Note: This option only applies to the System renderer.

8. ReplaceTabWithSpace
Type: plist boolean
Failsafe: false
Description: Some types of firmware do not print tab characters or everything that follows them, causing
difficulties in using the UEFI Shell’s builtin text editor to edit property lists and other documents. This option
makes the console output spaces instead of tabs.

Note: This option only applies to System renderer.

9. ProvideConsoleGop
Type: plist boolean
Failsafe: false
Description: Ensure GOP (Graphics Output Protocol) on console handle.

macOS bootloader requires GOP or UGA (for 10.4 EfiBoot) to be present on console handle, yet the exact
location of the graphics protocol is not covered by the UEFI specification. This option will ensure GOP and
UGA, if present, are available on the console handle.

Note: This option will also replace broken GOP protocol on console handle, which may be the case on MacPro5,1
with newer GPUs.

10. ReconnectOnResChange
Type: plist boolean
Failsafe: false
Description: Reconnect console controllers after changing screen resolution.

77

https://github.com/acidanthera/OpenCorePkg/blob/master/Include/Acidanthera/Protocol/OcForceResolution.h

On some types of firmware, the controllers that produce the console protocols (simple text out) must be reconnected
when the screen resolution is changed via GOP. Otherwise they will not produce text based on the new resolution.

Note: On several boards this logic may result in black screen when launching OpenCore from Shell and thus it is
optional. In versions prior to 0.5.2 this option was mandatory and not configurable. Please do not use this unless
required.

11. SanitiseClearScreen
Type: plist boolean
Failsafe: false
Description: Some types of firmware reset screen resolutions to a failsafe value (such as 1024x768) on the
attempts to clear screen contents when large display (e.g. 2K or 4K) is used. This option attempts to apply a
workaround.

Note: This option only applies to System renderer. On all known affected systems ConsoleMode had to be set to
empty string for this to work.

12. UgaPassThrough
Type: plist boolean
Failsafe: false
Description: Provide UGA protocol instances on top of GOP protocol.

Some types of firmware do not implement the legacy UGA protocol but this may be required for screen output by
older EFI applications such as EfiBoot from 10.4.

11.11 ProtocolOverrides Properties
1. AppleAudio

Type: plist boolean
Failsafe: false
Description: Reinstalls Apple audio protocols with builtin versions.

Apple audio protocols allow macOS bootloader and OpenCore to play sounds and signals for screen reading or
audible error reporting. Supported protocols are beep generation and VoiceOver. VoiceOver protocol is specific to
Gibraltar machines (T2) and is not supported before macOS High Sierra (10.13). Instead older macOS versions
use AppleHDA protocol, which is currently not implemented.

Only one set of audio protocols can be available at a time, so in order to get audio playback in OpenCore user
interface on Mac system implementing some of these protocols this setting should be enabled.

Note: Backend audio driver needs to be configured in UEFI Audio section for these protocols to be able to stream
audio.

2. AppleBootPolicy
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Boot Policy protocol with a builtin version. This may be used to ensure APFS
compatibility on VMs or legacy Macs.

Note: Some Macs, namely MacPro5,1, do have APFS compatibility, but their Apple Boot Policy protocol contains
recovery detection issues, thus using this option is advised on them as well.

3. AppleDebugLog
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Debug Log protocol with a builtin version.

4. AppleEvent
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Event protocol with a builtin version. This may be used to ensure File Vault 2
compatibility on VMs or legacy Macs.

78

5. AppleFramebufferInfo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Framebuffer Info protocol with a builtin version. This may be used to override
framebuffer information on VMs or legacy Macs to improve compatibility with legacy EfiBoot such as the one in
macOS 10.4.

6. AppleImageConversion
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Image Conversion protocol with a builtin version.

7. AppleImg4Verification
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple IMG4 Verification protocol with a builtin version. This protocol is used to verify
im4m manifest files used by Apple Secure Boot.

8. AppleKeyMap
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Key Map protocols with builtin versions.

9. AppleRtcRam
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple RTC RAM protocol with builtin version.

Note: Builtin version of Apple RTC RAM protocol may filter out I/O attempts to select RTC memory addresses.
The list of addresses can be specified in 4D1FDA02-38C7-4A6A-9CC6-4BCCA8B30102:rtc-blacklist variable as
a data array.

10. AppleSecureBoot
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple Secure Boot protocol with a builtin version.

11. AppleSmcIo
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple SMC I/O protocol with a builtin version.

This protocol replaces legacy VirtualSmc UEFI driver, and is compatible with any SMC kernel extension.
However, in case FakeSMC kernel extension is used, manual NVRAM key variable addition may be needed.

12. AppleUserInterfaceTheme
Type: plist boolean
Failsafe: false
Description: Reinstalls Apple User Interface Theme protocol with a builtin version.

13. DataHub
Type: plist boolean
Failsafe: false
Description: Reinstalls Data Hub protocol with a builtin version. This will delete all previous properties if the
protocol was already installed.

14. DeviceProperties
Type: plist boolean
Failsafe: false
Description: Reinstalls Device Property protocol with a builtin version. This will delete all previous properties
if it was already installed. This may be used to ensure full compatibility on VMs or legacy Macs.

15. FirmwareVolume

79

Type: plist boolean
Failsafe: false
Description: Forcibly wraps Firmware Volume protocols or installs new to support custom cursor images for
File Vault 2. Should be set to true to ensure File Vault 2 compatibility on everything but VMs and legacy Macs.

Note: Several virtual machines including VMware may have corrupted cursor image in HiDPI mode and thus
may also require this setting to be enabled.

16. HashServices
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls Hash Services protocols with builtin versions. Should be set to true to ensure
File Vault 2 compatibility on platforms providing broken SHA-1 hashing. Can be diagnosed by invalid cursor size
with UIScale set to 02, in general platforms prior to APTIO V (Haswell and older) are affected.

17. OSInfo
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls OS Info protocol with builtin versions. This protocol is generally used to receive
notifications from macOS bootloader, by the firmware or by other applications.

18. UnicodeCollation
Type: plist boolean
Failsafe: false
Description: Forcibly reinstalls unicode collation services with builtin version. Should be set to true to ensure
UEFI Shell compatibility on platforms providing broken unicode collation. In general legacy Insyde and APTIO
platforms on Ivy Bridge and earlier are affected.

11.12 Quirks Properties
1. ExitBootServicesDelay

Type: plist integer
Failsafe: 0
Description: Adds delay in microseconds after EXIT_BOOT_SERVICES event.

This is a very rough workaround to circumvent the Still waiting for root device message on some APTIO
IV firmware (ASUS Z87-Pro) particularly when using FileVault 2. It appears that for some reason, they execute
code in parallel to EXIT_BOOT_SERVICES, which results in the SATA controller being inaccessible from macOS. A
better approach should be found in some future. Expect 3 to 5 seconds to be adequate when this quirk is needed.

2. IgnoreInvalidFlexRatio
Type: plist boolean
Failsafe: false
Description: Some types of firmware (such as APTIO IV) may contain invalid values in the MSR_FLEX_RATIO
(0x194) MSR register. These values may cause macOS boot failures on Intel platforms.

Note: While the option is not expected to harm unaffected firmware, its use is only recommended when it is
specifically required.

3. ReleaseUsbOwnership
Type: plist boolean
Failsafe: false
Description: Attempt to detach USB controller ownership from the firmware driver. While most types of
firmware manage to do that properly, or at least have an option for this, some do not. As a result, the operating
system may freeze upon boot. Not recommended unless required.

4. RequestBootVarRouting
Type: plist boolean
Failsafe: false
Description: Request redirect of all Boot prefixed variables from EFI_GLOBAL_VARIABLE_GUID to
OC_VENDOR_VARIABLE_GUID.

80

This quirk requires OC_FIRMWARE_RUNTIME protocol implemented in OpenRuntime.efi. The quirk lets default
boot entry preservation at times when the firmware deletes incompatible boot entries. In summary, this quirk is
required to reliably use the Startup Disk preference pane in firmware that is not compatible with macOS boot
entries by design.

By redirecting Boot prefixed variables to a separate GUID namespace with the help of RequestBootVarRouting
quirk we achieve multiple goals:

• Operating systems are jailed and only controlled by OpenCore boot environment to enhance security.
• Operating systems do not mess with OpenCore boot priority, and guarantee fluent updates and hibernation

wakes for cases that require reboots with OpenCore in the middle.
• Potentially incompatible boot entries, such as macOS entries, are not deleted or anyhow corrupted.

5. TscSyncTimeout
Type: plist integer
Failsafe: 0
Description: Attempts to perform TSC synchronisation with a specified timeout.

The primary purpose of this quirk is to enable early bootstrap TSC synchronisation on some server and laptop
models when running a debug XNU kernel. For the debug kernel the TSC needs to be kept in sync across the cores
before any kext could kick in rendering all other solutions problematic. The timeout is specified in microseconds
and depends on the amount of cores present on the platform, the recommended starting value is 500000.

This is an experimental quirk, which should only be used for the aforementioned problem. In all other cases
the quirk may render the operating system unstable and is not recommended. The recommended solution in
the other cases is to install a kernel driver such as VoodooTSCSync, TSCAdjustReset, or CpuTscSync (a more
specialised variant of VoodooTSCSync for newer laptops).

Note: The reason this quirk cannot replace the kernel driver is because it cannot operate in ACPI S3 mode (sleep
wake) and because the UEFI firmware provides very limited multicore support preventing the precise update of
the MSR registers.

6. UnblockFsConnect
Type: plist boolean
Failsafe: false
Description: Some types of firmware block partition handles by opening them in By Driver mode, resulting in
being unable to install File System protocols.

Note: The quirk is mostly relevant for select HP laptops with no drives listed.

11.13 ReservedMemory Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Start address of the reserved memory region, which should be allocated as reserved effectively
marking the memory of this type inaccessible to the operating system.

The addresses written here must be part of the memory map, have EfiConventionalMemory type, and page-aligned
(4 KBs).

Note: Some types of firmware may not allocate memory areas used by S3 (sleep) and S4 (hibernation) code unless
CSM is enabled causing wake failures. After comparing the memory maps with CSM disabled and enabled, these
areas can be found in the lower memory and can be fixed up by doing the reservation. See Sample.plist for
more details.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Size
Type: plist integer

81

https://support.apple.com/HT202796
https://github.com/RehabMan/VoodooTSCSync
https://github.com/interferenc/TSCAdjustReset
https://github.com/lvs1974/CpuTscSync

Failsafe: 0
Description: Size of the reserved memory region, must be page-aligned (4 KBs).

4. Type
Type: plist string
Failsafe: Reserved
Description: Memory region type matching the UEFI specification memory descriptor types. Mapping:

• Reserved — EfiReservedMemoryType
• LoaderCode — EfiLoaderCode
• LoaderData — EfiLoaderData
• BootServiceCode — EfiBootServicesCode
• BootServiceData — EfiBootServicesData
• RuntimeCode — EfiRuntimeServicesCode
• RuntimeData — EfiRuntimeServicesData
• Available — EfiConventionalMemory
• Persistent — EfiPersistentMemory
• UnusableMemory — EfiUnusableMemory
• ACPIReclaimMemory — EfiACPIReclaimMemory
• ACPIMemoryNVS — EfiACPIMemoryNVS
• MemoryMappedIO — EfiMemoryMappedIO
• MemoryMappedIOPortSpace — EfiMemoryMappedIOPortSpace
• PalCode — EfiPalCode

5. Enabled
Type: plist boolean
Failsafe: false
Description: This region will not be reserved unless set to true.

82

12 Troubleshooting

12.1 Legacy Apple OS
Older operating systems may be more complicated to install, but sometimes can be necessary to use for all kinds of
reasons. While a compatible board identifier and CPUID are the obvious requirements for proper functioning of an
older operating system, there are many other less obvious things to consider. This section tries to cover a common set
of issues relevant to installing older macOS operating systems.

While newer operating systems can be downloaded over the internet, older operating systems did not have installation
media for every minor release, so to get a compatible distribution one may have to download a device-specific image
and mod it if necessary. To get the list of the bundled device-specific builds for legacy operating systems one can visit
this archived Apple Support article. Since it is not always accurate, the latest versions are listed below.

12.1.1 macOS 10.8 and 10.9

• Disk images on these systems use Apple Partitioning Scheme and will require the proprietary PartitionDxe
driver to run DMG recovery and installation. It is possible to set DmgLoading to Disabled to run the recovery
without DMG loading avoiding the need for PartitionDxe.

• Cached kernel images often do not contain family drivers for networking (IONetworkingFamily) or audio
(IOAudioFamily) requiring the use of Force loading in order to inject networking or audio drivers.

12.1.2 macOS 10.7

• All previous issues apply.

• SSSE3 support (not to be confused with SSE3 support) is a hard requirement for macOS 10.7 kernel.

• Many kexts, including Lilu when 32-bit kernel is used and a lot of Lilu plugins, are unsupported on macOS 10.7
and older as they require newer kernel APIs, which are not part of the macOS 10.7 SDK.

• Prior to macOS 10.8 KASLR sliding is not supported, which will result in memory allocation failures on firmware
that utilise lower memory for their own purposes. Refer to acidanthera/bugtracker#1125 for tracking.

12.1.3 macOS 10.6

• All previous issues apply.

• SSSE3 support is a requirement for macOS 10.6 kernel with 64-bit userspace enabled. This limitation can mostly
be lifted by enabling the LegacyCommpage quirk.

• Last released installer images for macOS 10.6 are macOS 10.6.7 builds 10J3250 (for MacBookPro8,x) and
10J4139 (for iMac12,x), without Xcode). These images are limited to their target model identifiers and have no
-no_compat_check boot argument support. Modified images (with ACDT suffix) without model restrictions can
be found here, assuming macOS 10.6 is legally owned. Read DIGEST.txt for more details. Note that these are
the earliest tested versions of macOS 10.6 with OpenCore.

Model checking may also be erased by editing OSInstall.mpkg with e.g. Flat Package Editor by making Distribution
script to always return true in hwbeModelCheck function. Since updating the only file in the image and not corrupting
other files can be difficult and may cause slow booting due to kernel cache date changes, it is recommended to script
image rebuilding as shown below:

#!/bin/bash
Original.dmg is original image, OSInstall.mpkg is patched package
mkdir RO
hdiutil mount Original.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RO
cp RO/.DS_Store DS_STORE
hdiutil detach RO -force
rm -rf RO
hdiutil convert Original.dmg -format UDRW -o ReadWrite.dmg
mkdir RW
xattr -c OSInstall.mpkg

83

https://web.archive.org/web/20170705003629/https://support.apple.com/en-us/HT204319
https://github.com/acidanthera/bugtracker/issues/1125
https://mega.nz/folder/z5YUhYTb#gA_IRY5KMuYpnNCg7kR3ug

hdiutil mount ReadWrite.dmg -noverify -noautoopen -noautoopenrw -noautofsck -mountpoint RW
cp OSInstall.mpkg RW/System/Installation/Packages/OSInstall.mpkg
killall Finder fseventsd
rm -rf RW/.fseventsd
cp DS_STORE RW/.DS_Store
hdiutil detach RW -force
rm -rf DS_STORE RW
hdiutil convert ReadWrite.dmg -format UDZO -o ReadOnly.dmg

12.1.4 macOS 10.5

• All previous issues apply.

• This macOS version does not support x86_64 kernel and requires i386 kernel extensions and patches.

• This macOS version uses the first (V1) version of prelinkedkernel, which has kext symbol tables corrupted
by the kext tools. This nuance renders prelinkedkernel kext injection impossible in OpenCore. Mkext kext
injection will still work without noticeable performance drain and will be chosen automatically when KernelCache
is set to Auto.

• Last released installer image for macOS 10.5 is macOS 10.5.7 build 9J3050 (for MacBookPro5,3). Unlike the
others, this image is not limited to the target model identifiers and can be used as is. The original 9J3050 image
can be found here, assuming macOS 10.5 is legally owned. Read DIGEST.txt for more details. Note that this is
the earliest tested version of macOS 10.5 with OpenCore.

12.1.5 macOS 10.4

• All previous issues apply.

• This macOS version has a hard requirement to access all the optional packages on the second DVD disk installation
media, requiring either two disks or USB media installation.

• Last released installer images for macOS 10.4 are macOS 10.4.10 builds 8R4061a (for MacBookPro3,1) and 8R4088
(for iMac7,1)). These images are limited to their target model identifiers as on newer macOS versions. Modified
8R4088 images (with ACDT suffix) without model restrictions can be found here, assuming macOS 10.4 is legally
owned. Read DIGEST.txt for more details. Note that these are the earliest tested versions of macOS 10.4 with
OpenCore.

12.2 UEFI Secure Boot
OpenCore is designed to provide a secure boot chain between firmware and operating system. On most x86 platforms
trusted loading is implemented via UEFI Secure Boot model. Not only OpenCore fully supports this model, but it
also extends its capabilities to ensure sealed configuration via vaulting and provide trusted loading to the operating
systems using custom verification, such as Apple Secure Boot. Proper secure boot chain requires several steps and
careful configuration of select settings as explained below:

1. Enable Apple Secure Boot by setting SecureBootModel to run macOS. Note, that not every macOS is compatible
with Apple Secure Boot and there are several other restrictions as explained in Apple Secure Boot section.

2. Disable DMG loading by setting DmgLoading to Disabled if users have concerns of loading old vulnerable DMG
recoveries. This is not required, but recommended. For the actual tradeoffs see the details in DMG loading
section.

3. Make sure that APFS JumpStart functionality restricts the loading of old vulnerable drivers by setting MinDate
and MinVersion to 0. More details are provided in APFS JumpStart section. An alternative is to install apfs.efi
driver manually.

4. Make sure that Force driver loading is not needed and all the operating systems are still bootable.

5. Make sure that ScanPolicy restricts loading from undesired devices. It is a good idea to prohibit all removable
drivers or unknown filesystems.

84

https://mega.nz/folder/inRBTarD#zanf7fUbviwz3WHBU5xpCg
https://mega.nz/folder/D3ASzLzA#7sjYXE2X09f6aGjol_C7dg
https://en.wikipedia.org/wiki/UEFI_Secure_Boot

6. Sign all the installed drivers and tools with the private key. Do not sign tools that provide administrative access
to the computer, such as UEFI Shell.

7. Vault the configuration as explained Vaulting section.

8. Sign all OpenCore binaries (BOOTX64.efi, BOOTIa32.efi, Bootstrap.efi, OpenCore.efi) used on this system
with the same private key.

9. Sign all third-party operating system (not made by Microsoft or Apple) bootloaders if needed. For Linux there is
an option to install Microsoft-signed Shim bootloader as explained on e.g. Debian Wiki.

10. Enable UEFI Secure Boot in firmware preferences and install the certificate with a private key. Details on how to
generate a certificate can be found in various articles, such as this one, and are out of the scope of this document.
If Windows is needed one will also need to add the Microsoft Windows Production CA 2011. To launch option
ROMs or to use signed Linux drivers, Microsoft UEFI Driver Signing CA will also be needed.

11. Password-protect changing firmware settings to ensure that UEFI Secure Boot cannot be disabled without the
user’s knowledge.

12.3 Windows support
Can I install Windows?

While no official Windows support is provided, 64-bit UEFI Windows installations (Windows 8 and above) prepared
with Boot Camp are supposed to work. Third-party UEFI installations as well as systems partially supporting UEFI
boot, such as Windows 7, might work with some extra precautions. Things to consider:

• MBR (Master Boot Record) installations are legacy and will not be supported.

• All the modifications applied (to ACPI, NVRAM, SMBIOS, etc.) are supposed to be operating system agnostic,
i.e. apply equally regardless of the OS booted. This enables Boot Camp software experience on Windows.

• macOS requires the first partition to be EFI System Partition, and does not support the default Windows layout.
While OpenCore does have a workaround for this, it is highly recommend not to rely on it and install properly.

• Windows may need to be reactivated. To avoid it consider setting SystemUUID to the original firmware UUID.
Be aware that it may be invalid on old firmware, i.e., not random. If there still are issues, consider using HWID
or KMS38 license or making the use Custom UpdateSMBIOSMode. Other nuances of Windows activation are out
of the scope of this document and can be found online.

What additional software do I need?

To enable operating system switching and install relevant drivers in the majority of cases Windows support software
from Boot Camp is required. For simplicity of the download process or when configuring an already installed Windows
version a third-party utility, Brigadier, can be used successfully. Note, that 7-Zip may be downloaded and installed
prior to using Brigadier.

Remember to always use the latest version of Windows support software from Boot Camp, as versions prior to 6.1 do
not support APFS, and thus will not function correctly. To download newest software pass most recent Mac model
to Brigadier, for example ./brigadier.exe -m iMac19,1. To install Boot Camp on an unsupported Mac model
afterwards run PowerShell as Administrator and enter msiexec /i BootCamp.msi. If there is a previous version of
Boot Camp installed it should be removed first by running msiexec /x BootCamp.msi command. BootCamp.msi file
is located in BootCamp/Drivers/Apple directory and can be reached through Windows Explorer.

While Windows support software from Boot Camp solves most of compatibility problems, the rest may still have to be
addressed manually:

• To invert mouse wheel scroll direction FlipFlopWheel must be set to 1 as explained on SuperUser.

• RealTimeIsUniversal must be set to 1 to avoid time desync between Windows and macOS as explained on
SuperUser (this is usually not needed).

• To access Apple filesystems such as HFS+ and APFS, separate software may need to be installed. Some of
the known utilities are: Apple HFS+ driver (hack for Windows 10), HFSExplorer, MacDrive, Paragon APFS,
Paragon HFS+, TransMac, etc. Remember to never ever attempt to modify Apple file systems from Windows as
this often leads to irrecoverable data loss.

85

https://wiki.debian.org/SecureBoot
https://habr.com/en/post/273497
http://go.microsoft.com/fwlink/?LinkID=321192
http://go.microsoft.com/fwlink/?LinkId=321194
https://github.com/acidanthera/bugtracker/issues/327
https://support.apple.com/boot-camp
https://github.com/timsutton/brigadier
https://www.7-zip.org
https://superuser.com/a/364353
https://superuser.com/q/494432
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/
https://forums.macrumors.com/threads/apple-hfs-windows-driver-download.1368010/post-24180079
http://www.catacombae.org/hfsexplorer

Why do I see Basic data partition in Boot Camp Startup Disk control panel?

Boot Camp control panel uses GPT partition table to obtain each boot option name. After installing Windows
separately the partition will have to be relabelled manually. This can be done with many utilities including open-source
gdisk utility. Reference example:

PS C:\gdisk> .\gdisk64.exe \\.\physicaldrive0
GPT fdisk (gdisk) version 1.0.4

Command (? for help): p
Disk \\.\physicaldrive0: 419430400 sectors, 200.0 GiB
Sector size (logical): 512 bytes
Disk identifier (GUID): DEC57EB1-B3B5-49B2-95F5-3B8C4D3E4E12
Partition table holds up to 128 entries
Main partition table begins at sector 2 and ends at sector 33
First usable sector is 34, last usable sector is 419430366
Partitions will be aligned on 2048-sector boundaries
Total free space is 4029 sectors (2.0 MiB)

Number Start (sector) End (sector) Size Code Name
1 2048 1023999 499.0 MiB 2700 Basic data partition
2 1024000 1226751 99.0 MiB EF00 EFI system partition
3 1226752 1259519 16.0 MiB 0C01 Microsoft reserved ...
4 1259520 419428351 199.4 GiB 0700 Basic data partition

Command (? for help): c
Partition number (1-4): 4
Enter name: BOOTCAMP

Command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE EXISTING PARTITIONS!!

Do you want to proceed? (Y/N): Y
OK; writing new GUID partition table (GPT) to \\.\physicaldrive0.
Disk synchronization succeeded! The computer should now use the new partition table.
The operation has completed successfully.

Listing 4: Relabeling Windows volume

How to choose Windows BOOTCAMP with custom NTFS drivers?

Third-party drivers providing NTFS support, such as NTFS-3G, Paragon NTFS, Tuxera NTFS or Seagate Paragon
Driver break certain macOS functionality, including Startup Disk preference pane normally used for operating system
selection. While the recommended option remains not to use such drivers as they commonly corrupt the filesystem, and
prefer the driver bundled with macOS with optional write support (command or GUI), there still exist vendor-specific
workarounds for their products: Tuxera, Paragon, etc.

12.4 Debugging
Similar to other projects working with hardware OpenCore supports auditing and debugging. The use of NOOPT or
DEBUG build modes instead of RELEASE can produce a lot more debug output. With NOOPT source level debugging with
GDB or IDA Pro is also available. For GDB check OpenCore Debug page. For IDA Pro, version 7.3 or newer is needed,
and Debugging the XNU Kernel with IDA Pro may also help.

To obtain the log during boot serial port debugging can be used. Serial port debugging is enabled in Target, e.g. 0xB
for onscreen with serial. To initialise serial within OpenCore use SerialInit configuration option. For macOS the
best choice is CP2102-based UART devices. Connect motherboard TX to USB UART RX, and motherboard GND to USB
UART GND. Use screen utility to get the output, or download GUI software, such as CoolTerm.

86

https://sourceforge.net/projects/gptfdisk
https://www.tuxera.com/community/open-source-ntfs-3g
https://www.seagate.com/support/software/paragon
https://www.seagate.com/support/software/paragon
https://support.apple.com/HT202796
http://osxdaily.com/2013/10/02/enable-ntfs-write-support-mac-os-x
https://mounty.app
https://www.tuxera.com/products/tuxera-ntfs-for-mac/faq
https://kb.paragon-software.com/article/6604
https://github.com/acidanthera/OpenCorePkg/tree/master/Debug
https://www.hex-rays.com/products/ida/support/tutorials/index.shtml
https://freeware.the-meiers.org

Note: On several motherboards (and possibly USB UART dongles) PIN naming may be incorrect. It is very common
to have GND swapped with RX, thus, motherboard “TX” must be connected to USB UART GND, and motherboard “GND”
to USB UART RX.

Remember to enable COM port in firmware settings, and never use USB cables longer than 1 meter to avoid output
corruption. To additionally enable XNU kernel serial output debug=0x8 boot argument is needed.

12.5 Tips and Tricks
1. How to debug boot failure?

Normally it is enough to obtain the actual error message. For this ensure that:

• A DEBUG or NOOPT version of OpenCore is used.
• Logging is enabled (1) and shown onscreen (2): Misc → Debug → Target = 3.
• Logged messages from at least DEBUG_ERROR (0x80000000), DEBUG_WARN (0x00000002), and DEBUG_INFO

(0x00000040) levels are visible onscreen: Misc → Debug → DisplayLevel = 0x80000042.
• Critical error messages, such as DEBUG_ERROR, stop booting: Misc→ Security→ HaltLevel = 0x80000000.
• Watch Dog is disabled to prevent automatic reboot: Misc → Debug → DisableWatchDog = true.
• Boot Picker (entry selector) is enabled: Misc → Boot → ShowPicker = true.

If there is no obvious error, check the available hacks in Quirks sections one by one. For early boot troubleshooting,
for instance, when OpenCore menu does not appear, using UEFI Shell (bundled with OpenCore) may help to
see early debug messages.

2. How to debug macOS boot failure?

• Refer to boot-args values such as debug=0x100, keepsyms=1, -v, and similar.
• Do not forget about AppleDebug and ApplePanic properties.
• Take care of Booter, Kernel, and UEFI quirks.
• Consider using serial port to inspect early kernel boot failures. For this debug=0x108, serial=5, and

msgbuf=1048576 boot arguments are needed. Refer to the patches in Sample.plist when dying before serial
init.

• Always read the logs carefully.

3. How to customise boot entries?

OpenCore follows standard Apple Bless model and extracts the entry name from .contentDetails and
.disk_label.contentDetails files in the booter directory if present. These files contain an ASCII string
with an entry title, which may then be customised by the user.

4. How to choose the default boot entry?

OpenCore uses the primary UEFI boot option to select the default entry. This choice can be altered from UEFI
Setup, with the macOS Startup Disk preference, or the Windows Boot Camp Control Panel. Since choosing
OpenCore’s BOOTx64.EFI as a primary boot option limits this functionality in addition to several types of firmware
deleting incompatible boot options, potentially including those created by macOS, users are strongly encouraged
to use the RequestBootVarRouting quirk, which will preserve the selection made in the operating system within
the OpenCore variable space. Note, that RequestBootVarRouting requires a separate driver for functioning.

5. What is the simplest way to install macOS?

Copy online recovery image (*.dmg and *.chunklist files) to com.apple.recovery.boot directory on a FAT32
partition with OpenCore. Load OpenCore Boot Picker and choose the entry, it will have a (dmg) suffix. Custom
name may be created by providing .contentDetails file.

To download recovery online macrecovery.py can be used.

For offline installation refer to How to create a bootable installer for macOS article. Apart from App Store and
softwareupdate utility there also are third-party utilities to download an offline image.

6. Why do online recovery images (*.dmg) fail to load?

This may be caused by missing HFS+ driver, as all presently known recovery volumes have HFS+ filesystem.

87

https://support.apple.com/HT202796
https://support.apple.com/guide/bootcamp-control-panel/start-up-your-mac-in-windows-or-macos-bcmp29b8ac66/mac
https://github.com/acidanthera/OpenCorePkg/blob/master/Utilities/macrecovery/macrecovery.py
https://support.apple.com/HT201372
https://github.com/corpnewt/gibMacOS

7. Can I use this on Apple hardware or virtual machines?

Sure, most relatively modern Mac models including MacPro5,1 and virtual machines are fully supported. Even
though there are little to none specific details relevant to Mac hardware, some ongoing instructions can be found
on MacRumors.com.

8. Why do Find&Replace patches must equal in length?

For machine code (x86 code) it is not possible to do differently sized replacements due to relative addressing. For
ACPI code this is risky, and is technically equivalent to ACPI table replacement, thus not implemented. More
detailed explanation can be found on AppleLife.ru or in the ACPI section of this document.

9. How can I decide which Booter quirks to use?

These quirks originate from AptioMemoryFix driver but provide a wider set of changes specific to modern
systems. Note, that OpenRuntime driver is required for most configurations. To get a configuration similar to
AptioMemoryFix the following set of quirks should be enabled:

• ProvideConsoleGop (UEFI quirk)
• AvoidRuntimeDefrag
• DiscardHibernateMap
• EnableSafeModeSlide
• EnableWriteUnprotector
• ForceExitBootServices
• ProtectMemoryRegions
• ProvideCustomSlide
• RebuildAppleMemoryMap
• SetupVirtualMap

However, as of today, such set is strongly discouraged as some of these quirks are not necessary to be enabled or
need additional quirks. For example, DevirtualiseMmio and ProtectUefiServices are often required, while
DiscardHibernateMap and ForceExitBootServices are rarely necessary.

Unfortunately for some quirks such as RebuildAppleMemoryMap, EnableWriteUnprotector, ProtectMemoryRegions,
SetupVirtualMap, and SyncRuntimePermissions there is no definite approach even on similar systems, so trying
all their combinations may be required for optimal setup. Refer to individual quirk descriptions in this document
for more details.

88

https://forums.macrumors.com/threads/opencore-on-the-mac-pro.2207814
https://en.wikipedia.org/w/index.php?title=Relative_addressing
https://applelife.ru/posts/819790

	Introduction
	Generic Terms

	Configuration
	Configuration Terms
	Configuration Processing
	Configuration Structure

	Setup
	Directory Structure
	Installation and Upgrade
	Contribution
	Coding conventions
	Debugging

	ACPI
	Introduction
	Properties
	Add Properties
	Delete Properties
	Patch Properties
	Quirks Properties

	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Patch Properties
	Quirks Properties

	DeviceProperties
	Introduction
	Properties
	Common Properties

	Kernel
	Introduction
	Properties
	Add Properties
	Block Properties
	Emulate Properties
	Force Properties
	Patch Properties
	Quirks Properties
	Scheme Properties

	Misc
	Introduction
	Properties
	Boot Properties
	Debug Properties
	Security Properties
	Entry Properties

	NVRAM
	Introduction
	Properties
	Mandatory Variables
	Recommended Variables
	Other Variables

	PlatformInfo
	Properties
	Generic Properties
	DataHub Properties
	Memory Properties
	PlatformNVRAM Properties
	SMBIOS Properties

	UEFI
	Introduction
	Drivers
	Tools and Applications
	OpenCanopy
	OpenRuntime
	Properties
	APFS Properties
	Audio Properties
	Input Properties
	Output Properties
	ProtocolOverrides Properties
	Quirks Properties
	ReservedMemory Properties

	Troubleshooting
	Legacy Apple OS
	UEFI Secure Boot
	Windows support
	Debugging
	Tips and Tricks

