
OpenCore

Reference Manual (0.6.3
:::
.4)

[2020.12.06]

Copyright ©2018-2020 vit9696

loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as
a custom option to let OpenCore coexist with operating systems using BOOTx64.efi as their own loaders (e.g.
Windows), see BootProtect for more details.

• boot
Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Resources
Directory used for storing media resources, such as audio files for screen reader support. See UEFI Audio
Properties section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter driver responsible for operating system loading.

:::
The

:::::::::
directory

:::::::::::::
OpenCore.efi

:::::
resides

:::
is

:::::
called

::::
the

::::
root

:::::::::::
directory.

::::
By

::::::
default

:::::
root

::::::::::
directory

:
is
:::
set

:::
to

:::::::
EFI\OC,

::::::::
however,

:::::
when

:::::::::
launching

::::::::::::::
OpenCore.efi

:::::::
directly

::
or

:::::::
through

:::::::::::::::
Bootstrap.efi,

:::::
other

::::::::::
directories

::::::::::
containing

:::::::::::::
OpenCore.efi

:::
can

::::
also

:::
be

:::::::::
supported.

:

• config.plist
OC Config.

• vault.plist
Hashes for all files potentially loadable by OC Config.

• vault.sig
Signature for vault.plist.

• SysReport
Directory containing system reports generated by SysReport option.

• nvram.plist
OpenCore variable import file.

• opencore-YYYY-MM-DD-HHMMSS.txt
OpenCore log file.

• panic-YYYY-MM-DD-HHMMSS.txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including
0-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information regarding external resources
such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. OpenDuetPkg is one of the known
UEFI environment providers for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be
installed with a dedicated tool — BootInstall (bundled with OpenCore). Third-party utilities can be used to perform
this on systems other than macOS.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications

6

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

5 Booter

5.1 Introduction
This section allows to apply different kinds of UEFI modifications on Apple bootloader (boot.efi). The modifications
currently provide various patches and environment alterations for different firmware. Some of these features were
originally implemented as a part of AptioMemoryFix.efi, which is no longer maintained. See Tips and Tricks section
for migration steps.

If this is used for the first time on a customised firmware, there is a list of checks to do first. Prior to starting, the
following requirements should be fulfilled:

• Most up-to-date UEFI firmware (check the motherboard vendor website).
• Fast Boot and Hardware Fast Boot disabled in firmware settings if present.
• Above 4G Decoding or similar enabled in firmware settings if present. Note, that on some motherboards (notably

ASUS WS-X299-PRO) this option causes adverse effects, and must be disabled. While no other motherboards
with the same issue are known, this option should be checked first whenever erratic boot failures are encountered.

• DisableIoMapper quirk enabled, or VT-d disabled in firmware settings if present, or ACPI DMAR table deleted.
• No ‘slide‘ boot argument present in NVRAM or anywhere else. It is not necessary unless the system cannot be

booted at all or No slide values are usable! Use custom slide! message can be seen in the log.
• CFG Lock (MSR 0xE2 write protection) disabled in firmware settings if present. Consider patching it if no option

is available (for advanced users only). See VerifyMsrE2 notes for more details.
• CSM (Compatibility Support Module) disabled in firmware settings if present. On NVIDIA 6xx/AMD 2xx or older,

GOP ROM may have to be flashed first. Use GopUpdate (see the second post) or AMD UEFI GOP MAKER in
case of any potential confusion.

• EHCI/XHCI Hand-off enabled in firmware settings only if boot stalls unless USB devices are disconnected.
• VT-x, Hyper Threading, Execute Disable Bit enabled in firmware settings if present.
• While it may not be required, sometimes Thunderbolt support, Intel SGX, and Intel Platform Trust may

have to be disabled in firmware settings present.

When debugging sleep issues Power Nap and automatic power off may be (temporarily) disabled, which appear to
sometimes cause wake to black screen or boot loop issues on older platforms. The particular issues may vary, but in
general ACPI tables should be looked up first. Here is an example of a bug found in some Z68 motherboards. To turn
Power Nap and the others off run the following commands in Terminal:

sudo pmset autopoweroff 0
sudo pmset powernap 0
sudo pmset standby 0

Note: These settings may reset at hardware change and in certain other circumstances. To view their current state use
pmset -g command in Terminal.

5.2 Properties
1. MmioWhitelist

Type: plist array
Description: Designed to be filled with plist dict values, describing addresses critical for particular firmware
functioning when DevirtualiseMmio quirk is in use. See MmioWhitelist Properties section below.

2.
:::::
Patch

:::::
Type

:
:
::::::
plist

::::::
array

:::::::
Failsafe

:
:
:::::::
Empty

::::::::::::
Description:

::::::::
Perform

::::::
binary

::::::::
patches

::
in

:::::::
booter.

:

::::::::
Designed

::
to

:::
be

:::::
filled

::::
with

::::::
plist

::::::::::::
dictionary

:::::
values,

::::::::::
describing

::::
each

::::::
patch.

::::
See

:
Patch Properties

::::::
section

::::::
below.

3. Quirks
Type: plist dict
Description: Apply individual booter quirks described in Quirks Properties section below.

15

https://github.com/acidanthera/AptioFixPkg
https://github.com/LongSoft/UEFITool/blob/master/UEFIPatch/patches.txt
https://www.win-raid.com/t892f16-AMD-and-Nvidia-GOP-update-No-requests-DIY.html
http://www.insanelymac.com/forum/topic/299614-asus-eah6450-video-bios-uefi-gop-upgrade-and-gop-uefi-binary-in-efi-for-many-ati-cards/page-1#entry2042163
http://www.insanelymac.com/forum/topic/329624-need-cmos-reset-after-sleep-only-after-login/#entry2534645

5.3 MmioWhitelist Properties
1. Address

Type: plist integer
Failsafe: 0
Description: Exceptional MMIO address, which memory descriptor should be left virtualised (unchanged) by
DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This address will be devirtualised unless set to true.

5.4
:::::::
Patch

:::::::::::::
Properties

1.
::::
Arch

:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
::::
Any

::::::::::::
Description:

:::::::
Booter

:::::
patch

::::::::::::
architecture

:
(
:::
Any

:
,
:::::
i386,

:::::::
x86_64

:
).
:

2.
:::::::
Comment

:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

:::::
string

::::::::::::
Description:

:::::::::
Arbitrary

::::::
ASCII

::::::
string

::::
used

::
to

:::::::
provide

:::::::
human

:::::::
readable

:::::::::
reference

::
for

::::
the

:::::
entry.

::
It

::
is

::::::::::::::
implementation

::::::
defined

::::::::
whether

::::
this

:::::
value

::
is

:::::
used.

:

3.
:::::
Count

:::::
Type

:
:
::::::
plist

::::::::
integer

:::::::
Failsafe

:
:
::
0

::::::::::::
Description:

::::::::
Number

::
of

::::::
patch

:::::::::::
occurrences

::
to

::::::
apply.

::
0

::::::
applies

:::
the

:::::
patch

:::
to

:::
all

::::::::::
occurrences

:::::::
found.

:

4.
:::::::
Enabled

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
This

::::::
booter

::::::
patch

::::
will

:::
not

:::
be

::::
used

::::::
unless

:::
set

:::
to

:::::
true.

:

5.
::::
Find

:::::
Type

:
:
::::::
plist

:::::
data

:::::::
Failsafe

:
:
:::::::
Empty

::::
data

::::::::::::
Description:

:::::
Data

:::
to

::::
find.

:::::
This

:::::
must

:::::
equal

:::
to

::::::::
Replace

::
in

::::
size.

:

6.
:::::::::::
Identifier

:::::
Type

:
:
::::::
plist

:::::::
string

:::::::
Failsafe

:
:
:::::::
Empty

:::::
string

::::::::::::
Description:

::::::
Apple

::
for

:::::::
macOS

:::::::
booter

:::::::::
(generally

:::::::::
boot.efi

:
);
:::
or

::
a

:::::
name

:::::
with

:::::
suffix

::::
(e.g.

::::::::::::::
bootmgfw.efi

:
)
:::
for

::
a

::::::
specific

:::::::
booter;

:::
or

:::
Any

:
/
::::::
empty

::::::
string

::::::::
(failsafe)

:::
to

::::::
match

:::
any

:::::::
booter.

:

7.
:::::
Limit

:::::
Type

:
:
::::::
plist

::::::::
integer

:::::::
Failsafe

:
:
::
0

::::::::::::
Description:

::::::::::
Maximum

:::::::
number

::
of
::::::
bytes

::
to

::::::
search

::::
for.

::::
Can

:::
be

:::
set

:::
to

:
0

::
to

::::
look

::::::::
through

:::
the

::::::
whole

:::::::
booter.

16

8.
::::
Mask

:::::
Type

:
:
::::::
plist

:::::
data

:::::::
Failsafe

:
:
:::::::
Empty

::::
data

::::::::::::
Description:

:::::
Data

:::::::
bitwise

:::::
mask

:::::
used

::::::
during

::::
find

:::::::::::
comparison.

:::::::
Allows

:::::
fuzzy

::::::
search

:::
by

:::::::
ignoring

::::
not

:::::::
masked

::::
(set

::
to

:::::
zero)

::::
bits.

:::::
Can

::
be

::::
set

::
to

::::::
empty

:::::
data

::
to

:::
be

:::::::
ignored.

::::::
Must

:::::
equal

:::
to

::::
Find

::
in

::::
size

:::::::::
otherwise.

:

9.
:::::::
Replace

:::::
Type

:
:
::::::
plist

:::::
data

:::::::
Failsafe

:
:
:::::::
Empty

::::
data

::::::::::::
Description:

::::::::::::
Replacement

:::::
data

::
of

::::
one

::
or

:::::
more

::::::
bytes.

:

10.
::::::::::::
ReplaceMask

:::::
Type

:
:
::::::
plist

:::::
data

:::::::
Failsafe

:
:
:::::::
Empty

::::
data

::::::::::::
Description:

:::::
Data

:::::::
bitwise

:::::
mask

:::::
used

::::::
during

::::::::::::
replacement.

:::::::
Allows

:::::
fuzzy

:::::::::::
replacement

:::
by

:::::::::
updating

:::::::
masked

::::
(set

::
to

:::::::::
non-zero)

::::
bits.

:::::
Can

::
be

:::
set

:::
to

::::::
empty

:::::
data

::
to

:::
be

:::::::
ignored.

::::::
Must

:::::
equal

::
to

:::::::::
Replace

::
in

::::
size

:::::::::
otherwise.

:

11.
::::
Skip

:::::
Type

:
:
::::::
plist

::::::::
integer

:::::::
Failsafe

:
:
::
0

::::::::::::
Description:

::::::::
Number

::
of

::::::
found

:::::::::::
occurrences

::
to

:::
be

:::::::
skipped

::::::
before

:::::::::::
replacement

::
is
::::::
done.

:

5.5 Quirks Properties
1.

:::::::::::::::::::::
AllowRelocationBlock

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Allows

:::::::
booting

:::::::
macOS

::::::::
through

:
a
::::::::::
relocation

:::::
block.

:

:::::::::
Relocation

:::::
block

::
is
::
a

::::::
scratch

::::::
buffer

::::::::
allocated

::
in

:::::
lower

::
4
:::
GB

:::
to

::
be

:::::
used

::
for

:::::::
loading

::::
the

:::::
kernel

::::
and

::::::
related

::::::::::
structures

::
by

::::::::
EfiBoot

::
on

::::::::::
firmwares

:::::
where

::::::
lower

::::::::
memory

::
is

:::::::::
otherwise

::::::::
occupied

:::
by

:::
the

:::::::::
(assumed

:::
to

:::
be)

::::::::::::
non-runtime

:::::
data.

:::::
Right

::::::
before

:::::
kernel

:::::::
startup

:::
the

::::::::::
relocation

:::::
block

:
is
::::::
copied

:::::
back

::
to

:::::
lower

:::::::::
addresses.

:::::::::
Similarly

:::
all

:::
the

:::::
other

:::::::::
addresses

:::::::
pointing

:::
to

:::::::::
relocation

:::::
block

::::
are

::::
also

::::::::
carefully

::::::::
adjusted.

:::::::::::
Relocation

:::::
block

:::
can

:::
be

:::::
used

::::::
when:

•
:::
No

:::::
better

:::::
slide

::::::
exists

:::
(all

::::
the

:::::::
memory

::
is
::::::
used)

•
:::::::
slide=0

:
is
::::::
forced

::::
(by

:::
an

:::::::::
argument

::
or

::::
safe

::::::
mode)

:

•
:::::::
KASLR

::::::
(slide)

::
is

::::::::::::
unsupported

::::
(this

::
is
:::::::
macOS

::::
10.7

:::
or

::::::
older)

::::
This

:::::
quirk

::::::::
requires

:::::::::::::::::::
ProvideCustomSlide

::
to

::::
also

::
be

::::::::
enabled

::::
and

::::::::
generally

::::::
needs AvoidRuntimeDefrag

::
to

:::::
work

::::::::
correctly.

:::::::::::
Hibernation

::
is
::::
not

:::::::::
supported

:::::
when

::::::::
booting

::::
with

::
a

:::::::::
relocation

:::::
block

::::
(but

::::::::::
relocation

:::::
block

::
is

:::
not

:::::::
always

::::
used

:::::
when

::::
the

:::::
quirk

::
is

::::::::
enabled).

:

::::
Note

:
:
::::::
While

::::
this

:::::
quirk

::
is

::::::::
required

::
to

::::
run

:::::
older

:::::::
macOS

::::::::
versions

:::
on

:::::::::
platforms

::::
with

:::::
used

:::::
lower

::::::::
memory

::
it

::
is

::::
not

::::::::::
compatible

::::
with

:::::
some

:::::::::
hardware

::::
and

:::::::
macOS

:::
11.

:::
In

:::
this

:::::
case

:::
you

:::::
may

:::
try

::
to

::::
use

:::::::::::::::::::::
EnableSafeModeSlide

:::::::
instead.

2.
:::::::::::::::::::
AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on firmware that uses
SMM backing for select services such as variable storage. SMM may try to access physical addresses, but they get
moved by boot.efi.

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

3. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with

17

6. DisableIoMapper
Type: plist boolean
Failsafe: false
Requirement: 10.8 (not required for older)
Description: Disables IOMapper support in XNU (VT-d), which may conflict with the firmware implementation.

Note: This option is a preferred alternative to deleting DMAR ACPI table and disabling VT-d in firmware preferences,
which does not break VT-d support in other systems in case they need it.

7. DisableLinkeditJettison
Type: plist boolean
Failsafe: false
Requirement: 11.0

::
11

Description: Disables __LINKEDIT jettison code.

This option lets Lilu.kext and possibly some others function in macOS Big Sur with best performance without
keepsyms=1 boot argument.

8. DisableRtcChecksum
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Disables primary checksum (0x58-0x59) writing in AppleRTC.

Note 1 : This option will not protect other areas from being overwritten, see RTCMemoryFixup kernel extension
if this is desired.

Note 2 : This option will not protect areas from being overwritten at firmware stage (e.g. macOS bootloader), see
AppleRtcRam protocol description if this is desired.

9. ExtendBTFeatureFlags
Type: plist boolean
Failsafe: false
Requirement: 10.8
Description: Set FeatureFlags to 0x0F for full functionality of Bluetooth, including Continuity.

Note: This option is a substitution for BT4LEContinuityFixup.kext, which does not function properly due to late
patching progress.

10. ExternalDiskIcons
Type: plist boolean
Failsafe: false
Requirement: 10.4
Description: Apply icon type patches to AppleAHCIPort.kext to force internal disk icons for all AHCI disks.

Note: This option should be avoided whenever possible. Modern firmware usually have compatible AHCI
controllers.

11. ForceSecureBootScheme
Type: plist boolean
Failsafe: false
Requirement: 11.0

::
11

Description: Force x86 scheme for IMG4 verification.

Note: This option is required on virtual machines when using SecureBootModel different from x86legacy.

12. IncreasePciBarSize
Type: plist boolean
Failsafe: false
Requirement: 10.10
Description: Increases 32-bit PCI bar size in IOPCIFamily from 1 to 4 GBs.

Note: This option should be avoided whenever possible. In general the necessity of this option means misconfigured
or broken firmware.

31

https://github.com/acidanthera/RTCMemoryFixup

Model 10.6 (minimal) 10.6 (client) 10.6 (server) 10.7 (any)
Macmini 4,x (Mid 2010) 5,x (Mid 2011) 4,x (Mid 2010) 3,x (Early 2009)
MacBook Unsupported Unsupported Unsupported 5,x (2009/09)
MacBookAir Unsupported Unsupported Unsupported 2,x (Late 2008)
MacBookPro 4,x (Early 2008) 8,x (Early 2011) 8,x (Early 2011) 3,x (Mid 2007)
iMac 8,x (Early 2008) 12,x (Mid 2011) 12,x (Mid 2011) 7,x (Mid 2007)
MacPro 3,x (Early 2008) 5,x (Mid 2010) 3,x (Early 2008) 3,x (Early 2008)
Xserve 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008) 2,x (Early 2008)

Note: 3+2 and 6+4 hotkeys to choose the preferred architecture are unsupported due to being handled by EfiBoot
and thus being hard to properly detect.

3. KernelCache
Type: plist string
Failsafe: Auto
Description: Prefer specified kernel cache type (Auto, Cacheless, Mkext, Prelinked) when available.

Different variants of macOS support different kernel caching variants designed to improve boot performance.
This setting prevents the use of faster kernel caching variants if slower variants are available for debugging and
stability reasons. I.e., by specifying Mkext, Prelinked will be disabled for e.g. 10.6 but not for 10.7.

The list of available kernel caching types and its current support in OpenCore is listed below.

macOS i386 NC i386 MK i386 PK x86_64 NC x86_64 MK x86_64 PK x86_64 KC
10.4 YES YES (V1) NO (V1) — — — —
10.5 YES YES (V1) NO (V1) — — — —
10.6 YES YES (V2) YES (V2) YES YES (V2) YES (V2) —
10.7 YES — YES (V3) YES — YES (V3) —
10.8-10.9 — — — YES — YES (V3) —
10.10-10.15 — — — — — YES (V3) —

11.0
::
11+ — — — — — YES (V3) YES

Note: First version (V1) of 32-bit prelinkedkernel is unsupported due to kext symbol tables being corrupted
by the tools. On these versions Auto will block prelinkedkernel booting. This also makes keepsyms=1 for kext
frames broken on these systems.

34

For Tools OpenCore will try to load a custom icon and fallback to the default icon:
– ResetNVRAM — Resources\Image\ResetNVRAM.icns — ResetNVRAM.icns from icons directory.
– Tools\<TOOL_RELATIVE_PATH>.icns — icon near the tool file with appended .icns extension.

For custom boot Entries OpenCore will try to load a custom icon and fallback to the volume icon or the
default icon:
– <ENTRY_PATH>.icns — icon near the entry file with appended .icns extension.

For all other entries OpenCore will try to load a volume icon and fallback to the default icon:
– .VolumeIcon.icns file at Preboot

::::::
volume

:::::::::
directory

:::
for

::::::
APFS

:::
(if

::::::::
present).

:

–
:::::::::::::::::
.VolumeIcon.icns

:::
file

::
at

::::::::
Preboot root for APFS

::::::::::
(otherwise).

– .VolumeIcon.icns file at volume root for other filesystems.

Volume icons can be set in Finder. Note, that enabling this may result in external and internal icons to be
indistinguishable.

• 0x0002 — OC_ATTR_USE_DISK_LABEL_FILE, provides custom rendered titles for boot entries:
– .disk_label (.disk_label_2x) file near bootloader for all filesystems.
– <TOOL_NAME>.lbl (<TOOL_NAME>.l2x) file near tool for Tools.

Prerendered labels can be generated via disklabel utility or bless command. When disabled or missing
text labels (.contentDetails or .disk_label.contentDetails) are to be rendered instead.

• 0x0004 — OC_ATTR_USE_GENERIC_LABEL_IMAGE, provides predefined label images for boot entries without
custom entries. May give less detail for the actual boot entry.

• 0x0008 — OC_ATTR_USE_ALTERNATE_ICONS, changes used icon set to an alternate one if it is supported. For
example, this could make a use of old-style icons with a custom background colour.

•
::::::
0x0010

::
—

::::::::::::::::::::::::::::::
OC_ATTR_USE_POINTER_CONTROL,

:::::::
enable

:::::::
pointer

::::::::
control

::
in

::::
the

::::::
picker

::::::
when

:::::::::
available.

:::::
For

::::::::
example,

::::
this

:::::
could

:::::
make

::::
use

::
of

::::::
mouse

::
or

:::::::::
trackpad

::
to

:::::::
control

:::
UI

:::::::::
elements.

:

5. PickerAudioAssist
Type: plist boolean
Failsafe: false
Description: Enable screen reader by default in boot picker.

For macOS bootloader screen reader preference is set in preferences.efires archive in isVOEnabled.int32
file and is controlled by the operating system. For OpenCore screen reader support this option is an independent
equivalent. Toggling screen reader support in both OpenCore boot picker and macOS bootloader FileVault 2
login window can also be done with Command + F5 key combination.

Note: screen reader requires working audio support, see UEFI Audio Properties section for more details.

6. PollAppleHotKeys
Type: plist boolean
Failsafe: false
Description: Enable modifier hotkey handling in boot picker.

In addition to action hotkeys, which are partially described in PickerMode section and are normally handled
by Apple BDS, there exist modifier keys, which are handled by operating system bootloader, namely boot.efi.
These keys allow to change operating system behaviour by providing different boot modes.

On some types of firmware, it may be problematic to use modifier keys due to driver incompatibilities. To
workaround this problem this option allows registering select hotkeys in a more permissive manner from within
boot picker. Such extensions include the support of tapping on keys in addition to holding and pressing Shift
along with other keys instead of just Shift alone, which is not detectable on many PS/2 keyboards. This list of
known modifier hotkeys includes:

• CMD+C+MINUS — disable board compatibility checking.
• CMD+K — boot release kernel, similar to kcsuffix=release.
• CMD+S — single user mode.
• CMD+S+MINUS — disable KASLR slide, requires disabled SIP.
• CMD+V — verbose mode.
• Shift — safe mode.

7. ShowPicker
Type: plist boolean

38

Description: Allow CMD+OPT+P+R handling and enable showing NVRAM Reset entry in boot picker.

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. ApECID
Type: plist integer, 64 bit
Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, make sure to generate a random 64-bit number with a cryptographically secure random number
generator. As an alternative, first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11.0

::
11

for Macs without the T2 chip.

With this value set and SecureBootModel valid and not Disabled it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system will have to be reinstalled or personalised.
Unless the operating system is personalised, macOS DMG recovery cannot be loaded. If DMG recovery is missing,
it can be downloaded with macrecovery utility and put to com.apple.recovery.boot as explained in Tips and
Tricks section. Note that DMG loading needs to be set to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

Before macOS 11.0
::
11, which introduced a dedicated x86legacy model for models without the T2 chip, personalised

Apple Secure Boot may not work as expected. When reinstalling the operating system, macOS Installer from
macOS 10.15 and older, will usually run out of free memory on the /var/tmp partition when trying to install
macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable
to verify macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs
for macOS personalisation by entering the following commands in macOS recovery terminal before starting the
installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5.
:::::::::::::::::::::
BlacklistAppleUpdate

:::::
Type

:
:
::::::
plist

::::::::
boolean

43

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Ignore

::::
boot

:::::::
options

::::::
trying

:::
to

::::::
update

::::::
Apple

::::::::::
peripheral

::::::::
firmware

::::
(e.g.

::::::::::::::::::
MultiUpdater.efi

:
).
:

::::
Note

:
:
:::::
This

::::::
option

::::::
exists

:::
due

:::
to

:::::
some

:::::::::
operating

::::::::
systems,

:::::::
namely

:::::::
macOS

::::
Big

::::
Sur,

::::::
being incapable

::
of

:::::::::
disabling

::::::::
firmware

:::::::
updates

:::::
with

:::
the

:::::::::
NVRAM

:::::::
variable

::
(

:::::::::::::::
run-efi-updater

::
).

6. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

• None — do nothing.
• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)

in UEFI variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

•
:::::::::::::::
BootstrapShort

::
—

::::::
create

:
a
:::::
short

:::::
boot

::::::
option

:::::::
instead

::
of

:
a
:::::::::
complete

::::
one,

::::::::
otherwise

::::::::::
equivalent

::
to

::::::::::
Bootstrap

:
.

::::
This

::::::
variant

::
is
::::::
useful

:::
for

:::::
some

::::
older

::::::::::
firmwares,

::::::
Insyde

::
in

::::::::::
particular,

:::
but

::::::::
possibly

::::::
others,

::::::
which

::::::
cannot

::::::
handle

:::
full

:::::::
device

::::::
paths.

:

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstrapping OpenCore.

Note 1 : Some types of firmware may have faulty NVRAM, no boot option support, or other incompatibilities.
While unlikely, the use of this option may even cause boot failures. This option should be used without any
warranty exclusively on the boards known to be compatible. Check acidanthera/bugtracker#1222 for some known
issues with Haswell and other boards.

Note 2 : Be aware that while NVRAM reset executed from OpenCore should not erase the boot option created in
Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

:::
For

:::::::::
significant

:::::::::::::::
implementation

:::::::
updates

::::
(e.g.

:::
in

:::::::::
OpenCore

:::::
0.6.4)

:::::
make

:::::
sure

::
to

:::::::
perform

::::::::
NVRAM

:::::
reset

:::::
with

:::::::::
Bootstrap

:::::::
disabled

::::::
before

::::::::::
reenabling.

7. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot.efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

• Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and will
cause a boot failure when Apple Secure Boot is activated.

8. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

44

https://github.com/acidanthera/bugtracker/issues/1255
https://github.com/acidanthera/bugtracker/issues/1222

• 0x00020000 (bit 17) — OC_SCAN_ALLOW_DEVICE_SASEX, allow scanning SAS and Mac NVMe devices.
• 0x00040000 (bit 18) — OC_SCAN_ALLOW_DEVICE_SCSI, allow scanning SCSI devices.
• 0x00080000 (bit 19) — OC_SCAN_ALLOW_DEVICE_NVME, allow scanning NVMe devices.
• 0x00100000 (bit 20) — OC_SCAN_ALLOW_DEVICE_ATAPI, allow scanning CD/DVD devices and old SATA.
• 0x00200000 (bit 21) — OC_SCAN_ALLOW_DEVICE_USB, allow scanning USB devices.
• 0x00400000 (bit 22) — OC_SCAN_ALLOW_DEVICE_FIREWIRE, allow scanning FireWire devices.
• 0x00800000 (bit 23) — OC_SCAN_ALLOW_DEVICE_SDCARD, allow scanning card reader devices.
• 0x01000000 (bit 24) — OC_SCAN_ALLOW_DEVICE_PCI, allow scanning devices directly connected to PCI bus

(e.g. VIRTIO).

Note: Given the above description, 0xF0103 value is expected to allow scanning of SATA, SAS, SCSI, and NVMe
devices with APFS file system, and prevent scanning of any devices with HFS or FAT32 file systems in addition
to not scanning APFS file systems on USB, CD, and FireWire drives. The combination reads as:

• OC_SCAN_FILE_SYSTEM_LOCK
• OC_SCAN_DEVICE_LOCK
• OC_SCAN_ALLOW_FS_APFS
• OC_SCAN_ALLOW_DEVICE_SATA
• OC_SCAN_ALLOW_DEVICE_SASEX
• OC_SCAN_ALLOW_DEVICE_SCSI
• OC_SCAN_ALLOW_DEVICE_NVME

15. SecureBootModel
Type: plist string
Failsafe: Default
Description: Apple Secure Boot hardware model.

Sets Apple Secure Boot hardware model and policy. Specifying this value defines which operating systems will be
bootable. Operating systems shipped before the specified model was released will not boot. Valid values:

• Default — Recent available model, currently set to j137.
• Disabled — No model, Secure Boot will be disabled.
• j137 — iMacPro1,1 (December 2017) minimum macOS 10.13.2 (17C2111)
• j680 — MacBookPro15,1 (July 2018) minimum macOS 10.13.6 (17G2112)
• j132 — MacBookPro15,2 (July 2018) minimum macOS 10.13.6 (17G2112)
• j174 — Macmini8,1 (October 2018) minimum macOS 10.14 (18A2063)
• j140k — MacBookAir8,1 (October 2018) minimum macOS 10.14.1 (18B2084)
• j780 — MacBookPro15,3 (May 2019) minimum macOS 10.14.5 (18F132)
• j213 — MacBookPro15,4 (July 2019) minimum macOS 10.14.5 (18F2058)
• j140a — MacBookAir8,2 (July 2019) minimum macOS 10.14.5 (18F2058)
• j152f — MacBookPro16,1 (November 2019) minimum macOS 10.15.1 (19B2093)
• j160 — MacPro7,1 (December 2019) minimum macOS 10.15.1 (19B88)
• j230k — MacBookAir9,1 (March 2020) minimum macOS 10.15.3 (19D2064)
• j214k — MacBookPro16,2 (May 2020) minimum macOS 10.15.4 (19E2269)
• j223 — MacBookPro16,3 (May 2020) minimum macOS 10.15.4 (19E2265)
• j215 — MacBookPro16,4 (June 2020) minimum macOS 10.15.5 (19F96)
• j185 — iMac20,1 (August 2020) minimum macOS 10.15.6 (19G2005)
• j185f — iMac20,2 (August 2020) minimum macOS 10.15.6 (19G2005)
• x86legacy — Macs and VMs without T2 chip minimum macOS 11.0

::
.1

:::::::::
(20B29)

Apple Secure Boot appeared in macOS 10.13 on models with T2 chips. Since PlatformInfo and SecureBootModel
are independent, Apple Secure Boot can be used with any SMBIOS with and without T2. Setting SecureBootModel
to any valid value but Disabled is equivalent to Medium Security of Apple Secure Boot. The ApECID value must
also be specified to achieve Full Security. Check ForceSecureBootScheme when using Apple Secure Boot on
a virtual machine.

Enabling Apple Secure Boot is more demanding to incorrect configurations, buggy macOS installations, and
unsupported setups. Things to consider:

(a) As with T2 Macs, unsigned kernel drivers and several signed kernel drivers, including NVIDIA Web Drivers,
cannot be installed.

47

https://support.apple.com/en-us/HT208330

(b) The list of cached drivers may be different, resulting in the need to change the list of Added or Forced kernel
drivers. For example, IO80211Family cannot be injected in this case.

(c) System volume alterations on operating systems with sealing, such as macOS 11, may result in the operating
system being unbootable. Do not try to disable system volume encryption unless Apple Secure Boot is
disabled.

(d) If the platform requires certain settings, but they were not enabled, because the obvious issues did not
trigger before, boot failure might occur. Be extra careful with IgnoreInvalidFlexRatio or HashServices.

(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot
until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware as Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

(h)
::::::::
Installing

:::::::
macOS

:::::
with

::::::
Apple

::::::
Secure

:::::
Boot

::::::::
enabled

::
is

:::
not

::::::::
possible

:::::
while

:::::
using

:::::::
HFS+

::::::
target

:::::::
volume.

:::::
This

::::
may

:::::::
include

::::::
HFS+

:::::::::
formatted

::::::
drives

:::::
when

:::
no

:::::
spare

::::::
APFS

:::::
drive

::
is

:::::::::
available.

:

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If there is “OCB: Apple Secure Boot prohibits this boot entry, en-
forcing!” message, it is likely the case. When this happens, either reinstall the operating system or copy
the manifests (files with .im4m extension, such as boot.efi.j137.im4m) from /usr/standalone/i386 to
/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is the system volume identifier. On
HFS+ installations the manifests should be copied to /System/Library/CoreServices on the system volume.

For more details on how to configure Apple Secure Boot with UEFI Secure Boot refer to UEFI Secure Boot
section.

8.6 Entry Properties
1. Arguments

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Auxiliary
Type: plist boolean
Failsafe: false
Description: This entry will not be listed by default when HideAuxiliary is set to true.

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This entry will not be listed unless set to true.

5. Name
Type: plist string
Failsafe: Empty string
Description: Human readable entry name displayed in boot picker.

6. Path
Type: plist string
Failsafe: Empty string
Description: Entry location depending on entry type.

• Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot(0x0)/Pci(0x1,0x1)/.../\EFI\COOL.EFI

48

• Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to OC/Tools directory. Example: OpenShell.efi.

7.
::::::::
RealPath

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
Pass

:::
full

:::::
path

:::
to

:::
the

::::
tool

:::::
when

::::::::::
launching.

:

:::::::
Passing

::::
tool

::::::::
directory

:::::
may

::
be

:::::::
unsafe

:::
for

::::
tool

:::::::::::
accidentally

::::::
trying

::
to

::::::
access

::::
files

::::::::
without

::::::::
checking

:::::
their

::::::::
integrity

:::
and

:::::
thus

::::::
should

:::::::::
generally

:::
be

::::::::
disabled.

::::::::
Reason

:::
to

::::::
enable

::::
this

::::::::
property

:::::
may

:::::::
include

:::::
cases

::::::
where

:::::
tools

:::::::
cannot

::::
work

::::::::
without

:::::::
external

::::
files

:::
or

::::
may

:::::
need

:::::
them

:::
for

::::::
better

::::::::
function

::::
(e.g.

:::::::::::
memtest86

:::
for

:::::::
logging

::::
and

::::::::::::
configuration

::
or

::::::
Shell

:::
for

:::::::::
automatic

::::::
script

::::::::::
execution).

:

::::
Note

:
:
::::
This

:::::::::
property

::
is

::::
only

:::::
valid

:::
for

::::::
Tools.

::::
For

::::::::
Entries

:::
this

::::::::
property

::::::
cannot

:::
be

::::::::
specified

::::
and

::
is

::::::
always

:::::
true

:
.
:

8.
::::::::
TextMode

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
Run

:::
the

:::::
entry

:::
in

::::
text

:::::
mode

:::::::
instead

::
of

::::::::
graphics

::::::
mode.

:

::::
This

::::::
setting

:::::
may

::
be

:::::::::
benefitial

::
to

:::::
some

:::::
older

:::::
tools

::::
that

:::::::
require

::::
text

:::::::
output.

:::
By

:::::::
default

:::
all

:::
the

:::::
tools

:::
are

:::::::::
launched

::
in

::::::::
graphics

::::::
mode.

:::::
Read

:::::
more

::::::
about

::::
text

::::::
modes

::
in

:
Output Properties

::::::
section

::::::
below.

:

49

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case 10.14 is needed.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
– acpi_layer=0xFFFFFFFF
– acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
– arch=i386 (force kernel architecture to i386, see KernelArch)
– batman=VALUE (AppleSmartBatteryManager debug mask)
– batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
– cpus=VALUE (maximum number of CPUs used)
– debug=VALUE (debug mask)
– io=VALUE (IOKit debug mask)
– keepsyms=1 (show panic log debug symbols)
– kextlog=VALUE (kernel extension loading debug mask)
–

::::::::::::
nvram-log=1

:::::::
(enables

:::::::::::::::::
AppleEFINVRAM

:::::
logs)

:

– nv_disable=1 (disables NVIDIA GPU acceleration)
– nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
– npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
– lapic_dont_panic=1
– slide=VALUE (manually set KASLR slide)
– smcdebug=VALUE (AppleSMC debug mask)
– -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
– -nehalem_error_disable
– -no_compat_check (disable model checking on 10.7+)
– -s (single mode)
– -v (verbose mode)
– -x (safe mode)

There are multiple external places summarising macOS argument lists: example 1, example 2.
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal

52

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

11.8 Audio Properties
1. AudioCodec

Type: plist integer
Failsafe: 0
Description: Codec address on the specified audio controller for audio support.

Normally this contains first audio codec address on the builtin analog audio controller (HDEF). Audio codec
addresses, e.g. 2, can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative this value can be obtained from IOHDACodecDevice class in I/O Registry containing it in
IOHDACodecAddress field.

2. AudioDevice
Type: plist string
Failsafe: empty string
Description: Device path of the specified audio controller for audio support.

Normally this contains builtin analog audio controller (HDEF) device path, e.g. PciRoot(0x0)/Pci(0x1b,0x0).
The list of recognised audio controllers can be found in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

As an alternative gfxutil -f HDEF command can be used in macOS. Specifying empty device path will result in
the first available audio controller to be used.

3. AudioOut
Type: plist integer
Failsafe: 0
Description: Index of the output port of the specified codec starting from 0.

Normally this contains the index of the green out of the builtin analog audio controller (HDEF). The number of
output nodes (N) in the debug log (marked in bold-italic):

OCAU: 1/3 PciRoot(0x0)/Pci(0x1,0x0)/Pci(0x0,0x1)/VenMsg(<redacted>,00000000) (4 outputs)
OCAU: 2/3 PciRoot(0x0)/Pci(0x3,0x0)/VenMsg(<redacted>,00000000) (1 outputs)
OCAU: 3/3 PciRoot(0x0)/Pci(0x1B,0x0)/VenMsg(<redacted>,02000000) (7 outputs)

The quickest way to find the right port is to bruteforce the values from 0 to N - 1.

4. AudioSupport
Type: plist boolean
Failsafe: false
Description: Activate audio support by connecting to a backend driver.

Enabling this setting routes audio playback from builtin protocols to a dedicated audio port (AudioOut) of the
specified codec (AudioCodec) located on the audio controller (AudioDevice).

5. MinimumVolume
Type: plist integer
Failsafe: 0
Description: Minimal heard volume level from 0 to 100.

Screen reader will use this volume level, when the calculated volume level is less than MinimumVolume. Boot
chime sound will not play if the calculated volume level is less than MinimumVolume.

6. PlayChime
Type: plist boolean

:::::::
string

Failsafe: false
::::::
empty

:::::
string

Description: Play chime sound at startup.

72

Enabling this setting plays boot chime through builtin audio support. Volume level is determined by MinimumVolume
and VolumeAmplifier settings and SystemAudioVolume NVRAM variable.

:::::::
Possible

::::::
values

:::::::
include:

:

•
::::
Auto

::
—

:::::::
Enables

::::::
chime

:::::
when

:::::::::::::
StartupMute

::::::::
NVRAM

:::::::
variable

:::
is

:::
not

:::::::
present

::
or

::::
set

::
to

:::
00.

:

•
:::::::
Enabled

::
—

::::::::
Enables

:::::
chime

:::::::::::::::
unconditionally.

:

•
::::::::
Disabled

::
—

::::::::
Disables

::::::
chime

::::::::::::::
unconditionally.

:

Note: this setting is
:::::::
Enabled

:::
can

:::
be

::::
used

:::
in separate from StartupMute NVRAM variable to avoid conflicts

when the firmware is able to play boot chime.

7. VolumeAmplifier
Type: plist integer
Failsafe: 0
Description: Multiplication coefficient for system volume to raw volume linear translation from 0 to 1000.

Volume level range read from SystemAudioVolume varies depending on the codec. To transform read value in
[0, 127] range into raw volume range [0, 100] the read value is scaled to VolumeAmplifier percents:

RawV olume = MIN(SystemAudioV olume ∗ V olumeAmplifier

100 , 100)

Note: the transformation used in macOS is not linear, but it is very close and this nuance is thus ignored.

11.9 Input Properties
1. KeyFiltering

Type: plist boolean
Failsafe: false
Description: Enable keyboard input sanity checking.

Apparently some boards such as the GA Z77P-D3 may return uninitialised data in EFI_INPUT_KEY with all input
protocols. This option discards keys that are neither ASCII, nor are defined in the UEFI specification (see tables
107 and 108 in version 2.8).

2. KeyForgetThreshold
Type: plist integer
Failsafe: 0
Description: Remove key unless it was submitted during this timeout in milliseconds.

AppleKeyMapAggregator protocol is supposed to contain a fixed length buffer of currently pressed keys. However,
the majority of the drivers only report key presses as interrupts and pressing and holding the key on the keyboard
results in subsequent submissions of this key with some defined time interval. As a result we use a timeout to
remove once pressed keys from the buffer once the timeout expires and no new submission of this key happened.

This option allows to set this timeout based on the platform. The recommended value that works on the majority
of the platforms is 5 milliseconds. For reference, holding one key on VMware will repeat it roughly every 2
milliseconds and the same value for APTIO V is 3-4 milliseconds. Thus it is possible to set a slightly lower value
on faster platforms and slightly higher value on slower platforms for more responsive input.

Note: Some platforms may require different values, higher or lower. For example, when detecting key misses in
OpenCanopy try increasing this value (e.g. to 10), and when detecting key stall, try decreasing this value. Since
every platform is different it may be reasonable to check every value from 1 to 25.

3. KeyMergeThreshold
Type: plist integer
Failsafe: 0
Description: Assume simultaneous combination for keys submitted within this timeout in milliseconds.

Similarly to KeyForgetThreshold, this option works around the sequential nature of key submission. To be able
to recognise simultaneously pressed keys in the situation when all keys arrive sequentially, we are required to set
a timeout within which we assume the keys were pressed together.

Holding multiple keys results in reports every 2 and 1 milliseconds for VMware and APTIO V respectively.
Pressing keys one after the other results in delays of at least 6 and 10 milliseconds for the same platforms. The

73

	Installation and Upgrade
	Booter
	Introduction
	Properties
	MmioWhitelist Properties
	Patch Properties
	Quirks Properties

	Entry Properties
	Other Variables
	Audio Properties
	Input Properties

