
OpenCore

Reference Manual (0.6.3
:::
.4)

[2020.11.13]

Copyright ©2018-2020 vit9696

loaded by the firmware by default according to UEFI specification, and Bootstrap.efi can be registered as
a custom option to let OpenCore coexist with operating systems using BOOTx64.efi as their own loaders (e.g.
Windows), see BootProtect for more details.

• boot
Duet bootstrap loader, which initialises UEFI environment on legacy BIOS firmware and loads OpenCore.efi
similarly to other bootstrap loaders. Modern Duet bootstrap loader will default to OpenCore.efi on the same
partition when present.

• ACPI
Directory used for storing supplemental ACPI information for ACPI section.

• Drivers
Directory used for storing supplemental UEFI drivers for UEFI section.

• Kexts
Directory used for storing supplemental kernel information for Kernel section.

• Resources
Directory used for storing media resources, such as audio files for screen reader support. See UEFI Audio
Properties section for more details. This directory also contains image files for graphical user interface. See
OpenCanopy section for more details.

• Tools
Directory used for storing supplemental tools.

• OpenCore.efi
Main booter driver responsible for operating system loading.

:::
The

:::::::::
directory

:::::::::::::
OpenCore.efi

:::::
resides

:::
is

:::::
called

::::
the

::::
root

:::::::::::
directory.

::::
By

::::::
default

:::::
root

::::::::::
directory

:
is
:::
set

:::
to

:::::::
EFI\OC,

::::::::
however,

:::::
when

:::::::::
launching

::::::::::::::
OpenCore.efi

:::::::
directly

::
or

:::::::
through

:::::::::::::::
Bootstrap.efi,

:::::
other

::::::::::
directories

::::::::::
containing

:::::::::::::
OpenCore.efi

:::
can

::::
also

:::
be

:::::::::
supported.

:

• config.plist
OC Config.

• vault.plist
Hashes for all files potentially loadable by OC Config.

• vault.sig
Signature for vault.plist.

• SysReport
Directory containing system reports generated by SysReport option.

• nvram.plist
OpenCore variable import file.

• opencore-YYYY-MM-DD-HHMMSS.txt
OpenCore log file.

• panic-YYYY-MM-DD-HHMMSS.txt
Kernel panic log file.

Note: It is not guaranteed that paths longer than OC_STORAGE_SAFE_PATH_MAX (128 characters including
0-terminator) will be accessible within OpenCore.

3.2 Installation and Upgrade
To install OpenCore reflect the Configuration Structure described in the previous section on a EFI volume of a GPT
partition. While corresponding sections of this document do provide some information regarding external resources
such as ACPI tables, UEFI drivers, or kernel extensions (kexts), completeness of the matter is out of the scope of this
document. Information about kernel extensions may be found in a separate Kext List document available in OpenCore
repository. Vaulting information is provided in Security Properties section of this document.

OC config, just like any property lists can be edited with any stock textual editor (e.g. nano, vim), but specialised
software may provide better experience. On macOS the preferred GUI application is Xcode. For a lightweight
cross-platform and open-source alternative ProperTree editor can be utilised.

For BIOS booting a third-party UEFI environment provider will have to be used. OpenDuetPkg is one of the known
UEFI environment providers for legacy systems. To run OpenCore on such a legacy system, OpenDuetPkg can be
installed with a dedicated tool — BootInstall (bundled with OpenCore). Third-party utilities can be used to perform
this on systems other than macOS.

For upgrade purposes refer to Differences.pdf document, providing the information about the changes affecting
the configuration compared to the previous release, and Changelog.md document, containing the list of modifications

6

https://github.com/acidanthera/OpenCorePkg/blob/master/Docs/Kexts.md
https://developer.apple.com/xcode
https://github.com/corpnewt/ProperTree
https://github.com/corpnewt/gibMacOS

DevirtualiseMmio. This means that the firmware will be able to directly communicate with this memory region
during operating system functioning, because the region this value is in will be assigned a virtual address.

The addresses written here must be part of the memory map, have EfiMemoryMappedIO type and EFI_MEMORY_RUNTIME
attribute (highest bit) set. To find the list of the candidates the debug log can be used.

2. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

3. Enabled
Type: plist boolean
Failsafe: false
Description: This address will be devirtualised unless set to true.

5.4 Quirks Properties
1.

:::::::::::::::::::::
AllowRelocationBlock

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Allows

:::::::
booting

:::::::
macOS

::::::::
through

:
a
::::::::::
relocation

:::::
block.

:

:::::::::
Relocation

:::::
block

::
is
::
a

::::::
scratch

::::::
buffer

::::::::
allocated

::
in

:::::
lower

::
4
:::
GB

:::
to

::
be

:::::
used

::
for

:::::::
loading

::::
the

:::::
kernel

::::
and

::::::
related

::::::::::
structures

::
by

::::::::
EfiBoot

::
on

::::::::::
firmwares

:::::
where

::::::
lower

::::::::
memory

::
is

:::::::::
otherwise

::::::::
occupied

:::
by

:::
the

:::::::::
(assumed

:::
to

:::
be)

::::::::::::
non-runtime

:::::
data.

:::::
Right

::::::
before

:::::
kernel

:::::::
startup

:::
the

::::::::::
relocation

:::::
block

:
is
::::::
copied

:::::
back

::
to

:::::
lower

:::::::::
addresses.

:::::::::
Similarly

:::
all

:::
the

:::::
other

:::::::::
addresses

:::::::
pointing

:::
to

:::::::::
relocation

:::::
block

::::
are

::::
also

::::::::
carefully

::::::::
adjusted.

:::::::::::
Relocation

:::::
block

:::
can

:::
be

:::::
used

::::::
when:

•
:::
No

:::::
better

:::::
slide

::::::
exists

:::
(all

::::
the

:::::::
memory

::
is
::::::
used)

•
:::::::
slide=0

:
is
::::::
forced

::::
(by

:::
an

:::::::::
argument

::
or

::::
safe

::::::
mode)

:

•
:::::::
KASLR

::::::
(slide)

::
is

::::::::::::
unsupported

::::
(this

::
is
:::::::
macOS

::::
10.7

:::
or

::::::
older)

::::
This

:::::
quirk

::::::::
requires

:::::::::::::::::::
ProvideCustomSlide

::
to

::::
also

::
be

::::::::
enabled

::::
and

::::::::
generally

::::::
needs AvoidRuntimeDefrag

::
to

:::::
work

::::::::
correctly.

:::::::::::
Hibernation

::
is
::::
not

:::::::::
supported

:::::
when

::::::::
booting

::::
with

::
a

:::::::::
relocation

:::::
block

::::
(but

::::::::::
relocation

:::::
block

::
is

:::
not

:::::::
always

::::
used

:::::
when

::::
the

:::::
quirk

::
is

::::::::
enabled).

:

::::
Note

:
:
::::::
While

::::
this

:::::
quirk

::
is

::::::::
required

::
to

::::
run

:::::
older

:::::::
macOS

::::::::
versions

:::
on

:::::::::
platforms

::::
with

:::::
used

:::::
lower

::::::::
memory

::
it

::
is

::::
not

::::::::::
compatible

::::
with

:::::
some

:::::::::
hardware

::::
and

:::::::
macOS

:::
11.

:::
In

:::
this

:::::
case

:::
you

:::::
may

:::
try

::
to

::::
use

:::::::::::::::::::::
EnableSafeModeSlide

:::::::
instead.

2.
:::::::::::::::::::
AvoidRuntimeDefrag
Type: plist boolean
Failsafe: false
Description: Protect from boot.efi runtime memory defragmentation.

This option fixes UEFI runtime services (date, time, NVRAM, power control, etc.) support on firmware that uses
SMM backing for select services such as variable storage. SMM may try to access physical addresses, but they get
moved by boot.efi.

Note: Most types of firmware, apart from Apple and VMware, need this quirk.

3. DevirtualiseMmio
Type: plist boolean
Failsafe: false
Description: Remove runtime attribute from select MMIO regions.

This option reduces stolen memory footprint from the memory map by removing runtime bit for known memory
regions. This quirk may result in the increase of KASLR slides available, but is not necessarily compatible with
the target board without additional measures. In general this frees from 64 to 256 megabytes of memory (present
in the debug log), and on some platforms it is the only way to boot macOS, which otherwise fails with allocation
error at bootloader stage.

16

Note 1 : It is known that some Lenovo laptops have a firmware bug, which makes them unbootable after performing
NVRAM reset. See acidanthera/bugtracker#995 for more details.

Note 2 : Resetting NVRAM will also erase all the boot options otherwise not backed up with bless (e.g. Linux).

2. AllowSetDefault
Type: plist boolean
Failsafe: false
Description: Allow CTRL+Enter and CTRL+Index handling to set the default boot option in boot picker.

3. ApECID
Type: plist integer, 64 bit
Failsafe: 0
Description: Apple Enclave Identifier.

Setting this value to any non-zero 64-bit integer will allow using personalised Apple Secure Boot identifiers. To
use this setting, make sure to generate a random 64-bit number with a cryptographically secure random number
generator. As an alternative, first 8 bytes of SystemUUID can be used for ApECID, this is found in macOS 11.0 for
Macs without the T2 chip.

With this value set and SecureBootModel valid and not Disabled it is possible to achieve Full Security of
Apple Secure Boot.

To start using personalised Apple Secure Boot, the operating system will have to be reinstalled or personalised.
Unless the operating system is personalised, macOS DMG recovery cannot be loaded. If DMG recovery is missing,
it can be downloaded with macrecovery utility and put to com.apple.recovery.boot as explained in Tips and
Tricks section. Note that DMG loading needs to be set to Signed to use any DMG with Apple Secure Boot.

To personalise an existing operating system use bless command after loading to macOS DMG recovery. Mount
the system volume partition, unless it has already been mounted, and execute the following command:

bless bless --folder "/Volumes/Macintosh HD/System/Library/CoreServices" \
--bootefi --personalize

Before macOS 11.0, which introduced a dedicated x86legacy model for models without the T2 chip, personalised
Apple Secure Boot may not work as expected. When reinstalling the operating system, macOS Installer from
macOS 10.15 and older, will usually run out of free memory on the /var/tmp partition when trying to install
macOS with the personalised Apple Secure Boot. Soon after downloading the macOS installer image an Unable
to verify macOS error message will appear. To workaround this issue allocate a dedicated RAM disk of 2 MBs
for macOS personalisation by entering the following commands in macOS recovery terminal before starting the
installation:

disk=$(hdiutil attach -nomount ram://4096)
diskutil erasevolume HFS+ SecureBoot $disk
diskutil unmount $disk
mkdir /var/tmp/OSPersonalizationTemp
diskutil mount -mountpoint /var/tmp/OSPersonalizationTemp $disk

4. AuthRestart
Type: plist boolean
Failsafe: false
Description: Enable VirtualSMC-compatible authenticated restart.

Authenticated restart is a way to reboot FileVault 2 enabled macOS without entering the password. A dedicated
terminal command can be used to perform authenticated restarts: sudo fdesetup authrestart. It is also used
when installing operating system updates.

VirtualSMC performs authenticated restart by saving disk encryption key split in NVRAM and RTC, which
despite being removed as soon as OpenCore starts, may be considered a security risk and thus is optional.

5.
:::::::::::::::::::::
BlacklistAppleUpdate

:::::
Type

:
:
::::::
plist

::::::::
boolean

42

https://github.com/acidanthera/bugtracker/issues/995
https://support.apple.com/en-us/HT208330

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::::
Ignore

::::
boot

:::::::
options

::::::
trying

:::
to

::::::
update

::::::
Apple

::::::::::
peripheral

::::::::
firmware

::::
(e.g.

::::::::::::::::::
MultiUpdater.efi

:
).
:

::::
Note

:
:
:::::
This

::::::
option

::::::
exists

:::
due

:::
to

:::::
some

:::::::::
operating

::::::::
systems,

:::::::
namely

:::::::
macOS

::::
Big

::::
Sur,

::::::
being incapable

::
of

:::::::::
disabling

::::::::
firmware

:::::::
updates

:::::
with

:::
the

:::::::::
NVRAM

:::::::
variable

::
(

:::::::::::::::
run-efi-updater

::
).

6. BootProtect
Type: plist string
Failsafe: None
Description: Attempt to provide bootloader persistence.

Valid values:

• None — do nothing.
• Bootstrap — create or update top-priority \EFI\OC\Bootstrap\Bootstrap.efi boot option (Boot9696)

in UEFI variable storage at bootloader startup. For this option to work RequestBootVarRouting is required
to be enabled.

This option provides integration with third-party operating system installation and upgrade at the times they
overwrite \EFI\BOOT\BOOTx64.efi file. By creating a custom option in Bootstrap mode this file path becomes
no longer used for bootstrapping OpenCore.

Note 1 : Some types of firmware may have faulty NVRAM, no boot option support, or other incompatibilities.
While unlikely, the use of this option may even cause boot failures. This option should be used without any
warranty exclusively on the boards known to be compatible. Check acidanthera/bugtracker#1222 for some known
issues with Haswell and other boards.

Note 2 : Be aware that while NVRAM reset executed from OpenCore should not erase the boot option created in
Bootstrap, executing NVRAM reset prior to loading OpenCore will remove it.

7. DmgLoading
Type: plist string
Failsafe: Signed
Description: Define Disk Image (DMG) loading policy used for macOS Recovery.

Valid values:

• Disabled — loading DMG images will fail. Disabled policy will still let macOS Recovery to load in most
cases as there usually are boot.efi files compatible with Apple Secure Boot. Manually downloaded DMG
images stored in com.apple.recovery.boot directories will not load, however.

• Signed — only Apple-signed DMG images will load. Due to Apple Secure Boot design Signed policy will
let any Apple-signed macOS Recovery to load regardless of Apple Secure Boot state, which may not always
be desired.

• Any — any DMG images will mount as normal filesystems. Any policy is strongly not recommended and will
cause a boot failure when Apple Secure Boot is activated.

8. EnablePassword
Type: plist boolean
Failsafe: false
Description: Enable password protection to allow sensitive operations.

Password protection ensures that sensitive operations such as booting a non-default operating system (e.g. macOS
recovery or a tool), resetting NVRAM storage, trying to boot into a non-default mode (e.g. verbose mode or safe
mode) are not allowed without explicit user authentication by a custom password. Currently password and salt
are hashed with 5000000 iterations of SHA-512.

Note: This functionality is currently in development and is not ready for daily usage.

9. ExposeSensitiveData
Type: plist integer
Failsafe: 0x6
Description: Sensitive data exposure bitmask (sum) to operating system.

• 0x01 — Expose printable booter path as an UEFI variable.
• 0x02 — Expose OpenCore version as an UEFI variable.

43

https://github.com/acidanthera/bugtracker/issues/1255
https://github.com/acidanthera/bugtracker/issues/1222

disabled.
(d) If the platform requires certain settings, but they were not enabled, because the obvious issues did not

trigger before, boot failure might occur. Be extra careful with IgnoreInvalidFlexRatio or HashServices.
(e) Operating systems released before Apple Secure Boot landed (e.g. macOS 10.12 or earlier) will still boot

until UEFI Secure Boot is enabled. This is so, because from Apple Secure Boot point they are treated as
incompatible and are assumed to be handled by the firmware as Microsoft Windows is.

(f) On older CPUs (e.g. before Sandy Bridge) enabling Apple Secure Boot might cause slightly slower loading
by up to 1 second.

(g) Since Default value will increase with time to support the latest major release operating system, it is not
recommended to use ApECID and Default value together.

Sometimes the already installed operating system may have outdated Apple Secure Boot manifests on the
Preboot partition causing boot failure. If there is “OCB: Apple Secure Boot prohibits this boot entry, en-
forcing!” message, it is likely the case. When this happens, either reinstall the operating system or copy
the manifests (files with .im4m extension, such as boot.efi.j137.im4m) from /usr/standalone/i386 to
/Volumes/Preboot/<UUID>/System/Library/CoreServices. Here <UUID> is the system volume identifier. On
HFS+ installations the manifests should be copied to /System/Library/CoreServices on the system volume.

For more details on how to configure Apple Secure Boot with UEFI Secure Boot refer to UEFI Secure Boot
section.

8.6 Entry Properties
1. Arguments

Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used as boot arguments (load options) of the specified entry.

2. Auxiliary
Type: plist boolean
Failsafe: false
Description: This entry will not be listed by default when HideAuxiliary is set to true.

3. Comment
Type: plist string
Failsafe: Empty string
Description: Arbitrary ASCII string used to provide human readable reference for the entry. It is implementation
defined whether this value is used.

4. Enabled
Type: plist boolean
Failsafe: false
Description: This entry will not be listed unless set to true.

5. Name
Type: plist string
Failsafe: Empty string
Description: Human readable entry name displayed in boot picker.

6. Path
Type: plist string
Failsafe: Empty string
Description: Entry location depending on entry type.

• Entries specify external boot options, and therefore take device paths in Path key. These values are not
checked, thus be extremely careful. Example: PciRoot(0x0)/Pci(0x1,0x1)/.../\EFI\COOL.EFI

• Tools specify internal boot options, which are part of bootloader vault, and therefore take file paths relative
to OC/Tools directory. Example: OpenShell.efi.

7.
::::::::
RealPath

:::::
Type

:
:
::::::
plist

::::::::
boolean

47

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
Pass

:::
full

:::::
path

:::
to

:::
the

::::
tool

:::::
when

::::::::::
launching.

:

:::::::
Passing

::::
tool

::::::::
directory

:::::
may

::
be

:::::::
unsafe

:::
for

::::
tool

:::::::::::
accidentally

::::::
trying

::
to

::::::
access

::::
files

::::::::
without

::::::::
checking

:::::
their

::::::::
integrity

:::
and

:::::
thus

::::::
should

:::::::::
generally

:::
be

::::::::
disabled.

::::::::
Reason

:::
to

::::::
enable

::::
this

::::::::
property

:::::
may

:::::::
include

:::::
cases

::::::
where

:::::
tools

:::::::
cannot

::::
work

::::::::
without

:::::::
external

::::
files

:::
or

::::
may

:::::
need

:::::
them

:::
for

::::::
better

::::::::
function

::::
(e.g.

:::::::::::
memtest86

:::
for

:::::::
logging

::::
and

::::::::::::
configuration

::
or

::::::
Shell

:::
for

:::::::::
automatic

::::::
script

::::::::::
execution).

:

::::
Note

:
:
::::
This

:::::::::
property

::
is

::::
only

:::::
valid

:::
for

::::::
Tools.

::::
For

::::::::
Entries

:::
this

::::::::
property

::::::
cannot

:::
be

::::::::
specified

::::
and

::
is

::::::
always

:::::
true

:
.
:

8.
::::::::
TextMode

:::::
Type

:
:
::::::
plist

::::::::
boolean

:::::::
Failsafe

:
:
::::::
false

::::::::::::
Description:

:::::
Run

:::
the

:::::
entry

:::
in

::::
text

:::::
mode

:::::::
instead

::
of

::::::::
graphics

::::::
mode.

:

::::
This

::::::
setting

:::::
may

::
be

:::::::::
benefitial

::
to

:::::
some

:::::
older

:::::
tools

::::
that

:::::::
require

::::
text

:::::::
output.

:::
By

:::::::
default

:::
all

:::
the

:::::
tools

:::
are

:::::::::
launched

::
in

::::::::
graphics

::::::
mode.

:::::
Read

:::::
more

::::::
about

::::
text

::::::
modes

::
in

:
Output Properties

::::::
section

::::::
below.

:

48

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_BID
Hardware BoardProduct (e.g. Mac-35C1E88140C3E6CF). Not present on real Macs, but used to avoid extra
parsing of SMBIOS tables, especially in boot.efi.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_MLB
Hardware BoardSerialNumber. Override for MLB. Present on newer Macs (2013+ at least).

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:HW_ROM
Hardware ROM. Override for ROM. Present on newer Macs (2013+ at least).

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:prev-lang:kbd
ASCII string defining default keyboard layout. Format is lang-COUNTRY:keyboard, e.g. ru-RU:252 for Russian
locale and ABC keyboard. Also accepts short forms: ru:252 or ru:0 (U.S. keyboard, compatible with 10.9). Full
decoded keyboard list from AppleKeyboardLayouts-L.dat can be found here. Using non-latin keyboard on 10.14
will not enable ABC keyboard, unlike previous and subsequent macOS versions, and is thus not recommended in
case 10.14 is needed.

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:security-mode
ASCII string defining FireWire security mode. Legacy, can be found in IOFireWireFamily source code in
IOFireWireController.cpp. It is recommended not to set this variable, which may speedup system startup. Setting
to full is equivalent to not setting the variable and none disables FireWire security.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:UIScale
One-byte data defining boot.efi user interface scaling. Should be 01 for normal screens and 02 for HiDPI
screens.

• 4D1EDE05-38C7-4A6A-9CC6-4BCCA8B38C14:DefaultBackgroundColor
Four-byte BGRA data defining boot.efi user interface background colour. Standard colours include BF BF BF
00 (Light Gray) and 00 00 00 00 (Syrah Black). Other colours may be set at user’s preference.

9.5 Other Variables
The following variables may be useful for certain configurations or troubleshooting:

• 7C436110-AB2A-4BBB-A880-FE41995C9F82:boot-args
Kernel arguments, used to pass configuration to Apple kernel and drivers. There are many arguments, which
may be found by looking for the use of PE_parse_boot_argn function in the kernel or driver code. Some of the
known boot arguments include:
– acpi_layer=0xFFFFFFFF
– acpi_level=0xFFFF5F (implies ACPI_ALL_COMPONENTS)
– arch=i386 (force kernel architecture to i386, see KernelArch)
– batman=VALUE (AppleSmartBatteryManager debug mask)
– batman-nosmc=1 (disable AppleSmartBatteryManager SMC interface)
– cpus=VALUE (maximum number of CPUs used)
– debug=VALUE (debug mask)
– io=VALUE (IOKit debug mask)
– keepsyms=1 (show panic log debug symbols)
– kextlog=VALUE (kernel extension loading debug mask

:
)
:

–
::::::::::::
nvram-log=1

:::::::
(enables

:::::::::::::::::
AppleEFINVRAM

::::
logs)

– nv_disable=1 (disables NVIDIA GPU acceleration)
– nvda_drv=1 (legacy way to enable NVIDIA web driver, removed in 10.12)
– npci=0x2000 (legacy, disables kIOPCIConfiguratorPFM64)
– lapic_dont_panic=1
– slide=VALUE (manually set KASLR slide)
– smcdebug=VALUE (AppleSMC debug mask)
– -amd_no_dgpu_accel (alternative to WhateverGreen’s -radvesa for new GPUs)
– -nehalem_error_disable
– -no_compat_check (disable model checking on 10.7+)
– -s (single mode)
– -v (verbose mode)
– -x (safe mode)

There are multiple external places summarising macOS argument lists: example 1, example 2.
• 7C436110-AB2A-4BBB-A880-FE41995C9F82:bootercfg

Booter arguments, similar to boot-args but for boot.efi. Accepts a set of arguments, which are hexadecimal

51

https://github.com/acidanthera/OpenCorePkg/tree/master/Utilities/AppleKeyboardLayouts
https://opensource.apple.com/source/IOFireWireFamily/IOFireWireFamily-473/IOFireWireFamily.kmodproj/IOFireWireController.cpp.auto.html
https://github.com/acpica/acpica/blob/master/source/include/acoutput.h
https://www.insanelymac.com/forum/topic/260539-1068-officially-released/?do=findComment&comment=1707972
https://github.com/acidanthera/WhateverGreen
https://osxeon.wordpress.com/2015/08/10/boot-argument-options-in-os-x
https://superuser.com/questions/255176/is-there-a-list-of-available-boot-args-for-darwin-os-x

	Installation and Upgrade
	Quirks Properties
	Entry Properties
	Other Variables

